Menu
July 7, 2019  |  

Coproduction of KPC-18 and VIM-1 carbapenemases by Enterobacter cloacae: Implications for newer ß-lactam-ß-lactamase inhibitor combinations.

Enterobacter cloacae strain G6809 with reduced susceptibility to carbapenems was identified from a patient in a long-term acute care hospital in Kentucky. G6809 belonged to sequence type (ST) 88 and carried two carbapenemase genes, blaKPC-18 and blaVIM-1. Whole-genome sequencing localized blaKPC-18 to the chromosome and blaVIM-1 to a 58-kb plasmid. The strain was highly resistant to ceftazidime-avibactam. Insidious coproduction of metallo-ß-lactamase with KPC-type carbapenemase has implications for the use of next-generation ß-lactam-ß-lactamase inhibitor combinations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Comparative analysis of an IncR plasmid carrying armA, blaDHA-1 and qnrB4 from Klebsiella pneumoniae ST37 isolates.

The objective of this study was to conduct a comparative analysis with reported IncR plasmids of a Klebsiella pneumoniae IncR plasmid carrying an MDR region.MDR K. pneumoniae isolates were serially identified from two inpatients at a hospital in the USA in 2014. MDR plasmid pYDC676 was fully sequenced, annotated and compared with related plasmids. Antimicrobial susceptibility testing, PFGE and MLST were also conducted.The K. pneumoniae isolates were identical by PFGE, belonged to ST37 and harboured an identical ~50 kb IncR plasmid (pYDC676). pYDC676 possessed the backbone and multi-IS loci closely related to IncR plasmids reported from aquatic bacteria, as well as animal and human K. pneumoniae strains, and carried an MDR region consisting of armA, blaDHA-1 and qnrB4, a combination that has been reported in IncR plasmids from K. pneumoniae ST11 strains in Europe and Asia. A plasmid with the identical IncR backbone and a similar MDR region containing blaDHA-1 and qnrB4 has also been reported in ST37 strains from Europe, suggesting potential dissemination of this lineage of IncR plasmids in K. pneumoniae ST37.K. pneumoniae ST37 strains with an MDR IncR plasmid carrying armA, blaDHA-1 and qnrB4 were identified in a hospital in the USA, where these resistance genes remain rare. The IncR backbone may play a role in the global dissemination of these resistance genes.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete genome sequence of Serratia marcescens SmUNAM836, a nonpigmented multidrug-resistant strain isolated from a Mexican Patient with obstructive pulmonary disease.

Serratia marcescens SmUNAM836 is a multidrug-resistant clinical strain isolated in Mexico City from a patient with chronic obstructive pulmonary disease. Its complete genome sequence was determined using PacBio RS II SMRT technology, consisting of a 5.2-Mb chromosome and a 26.3-kb plasmid, encoding multiple resistance determinants and virulence factors. Copyright © 2016 Sandner-Miranda et al.


July 7, 2019  |  

Complete genome sequence of the African strain AXO1947 of Xanthomonas oryzae pv. oryzae.

Xanthomonas oryzae pv. oryzae is the etiological agent of bacterial rice blight. Three distinct clades of X. oryzae pv. oryzae are known. We present the complete annotated genome of the African clade strain AXO194 using long-read single-molecule PacBio sequencing technology. The genome comprises a single chromosome of 4,674,975 bp and encodes for nine transcriptional activator-like (TAL) effectors. The approach and data presented in this announcement provide information for complex bacterial genome organization and the discovery of new virulence effectors, and they facilitate target characterization of TAL effectors. Copyright © 2016 Huguet-Tapia et al.


July 7, 2019  |  

De novo genome assembly shows genome wide similarity between Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense.

Trypanosoma brucei is a eukaryotic pathogen which causes African trypanosomiasis. It is notable for its variant surface glycoprotein (VSG) coat, which undergoes antigenic variation enabled by a large suite of VSG pseudogenes, allowing for persistent evasion of host adaptive immunity. While Trypanosoma brucei rhodesiense (Tbr) and T. b gambiense (Tbg) are human infective, related T. b. brucei (Tbb) is cleared by human sera. A single gene, the Serum Resistance Associated (SRA) gene, confers Tbr its human infectivity phenotype. Potential genetic recombination of this gene between Tbr and non-human infective Tbb strains has significant epidemiological consequences for Human African Trypanosomiasis outbreaks.Using long and short read whole genome sequencing, we generated a hybrid de novo assembly of a Tbr strain, producing 4,210 scaffolds totaling approximately 38.8 megabases, which comprise a significant proportion of the Tbr genome, and thus represents a valuable tool for a comparative genomics analyses among human and non-human infective T. brucei and future complete genome assembly. We detected 5,970 putative genes, of which two, an alcohol oxidoreductase and a pentatricopeptide repeat-containing protein, were members of gene families common to all T. brucei subspecies, but variants specific to the Tbr strain sequenced in this study. Our findings confirmed the extremely high level of genomic similarity between the two parasite subspecies found in other studies.We confirm at the whole genome level high similarity between the two Tbb and Tbr strains studied. The discovery of extremely minor genomic differentiation between Tbb and Tbr suggests that the transference of the SRA gene via genetic recombination could potentially result in novel human infective strains, thus all genetic backgrounds of T. brucei should be considered potentially human infective in regions where Tbr is prevalent.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica serovar Typhimurium strain YU15 (sequence type 19) harboring the Salmonella genomic island 1 and virulence plasmid pSTV.

The complete genome of Salmonella enterica subsp. enterica serovar Typhimurium sequence type 19 (ST19) strain YU15, isolated in Yucatán, Mexico, from a human baby stool culture, was determined using PacBio technology. The chromosome contains five intact prophages and the Salmonella genomic island 1 (SGI1). This strain carries the Salmonella virulence plasmid pSTV.


July 7, 2019  |  

TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe.

Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres. © 2016 The Authors.


July 7, 2019  |  

Association between progranulin and Gaucher disease.

Gaucher disease (GD) is a genetic disease caused by mutations in the GBA1 gene which result in reduced enzymatic activity of ß-glucocerebrosidase (GCase). This study identified the progranulin (PGRN) gene (GRN) as another gene associated with GD.Serum levels of PGRN were measured from 115 GD patients and 99 healthy controls, whole GRN gene from 40 GD patients was sequenced, and the genotyping of 4 SNPs identified in GD patients was performed in 161 GD and 142 healthy control samples. Development of GD in PGRN-deficient mice was characterized, and the therapeutic effect of rPGRN on GD analyzed.Serum PGRN levels were significantly lower in GD patients (96.65±53.45ng/ml) than those in healthy controls of the general population (164.99±43.16ng/ml, p<0.0001) and of Ashkenazi Jews (150.64±33.99ng/ml, p<0.0001). Four GRN gene SNPs, including rs4792937, rs78403836, rs850713, and rs5848, and three point mutations, were identified in a full-length GRN gene sequencing in 40 GD patients. Large scale SNP genotyping in 161 GD and 142 healthy controls was conducted and the four SNP sites have significantly higher frequency in GD patients. In addition, "aged" and challenged adult PGRN null mice develop GD-like phenotypes, including typical Gaucher-like cells in lung, spleen, and bone marrow. Moreover, lysosomes in PGRN KO mice exhibit a tubular-like appearance. PGRN is required for the lysosomal appearance of GCase and its deficiency leads to GCase accumulation in the cytoplasm. More importantly, recombinant PGRN is therapeutic in various animal models of GD and human fibroblasts from GD patients.Our data demonstrates an unknown association between PGRN and GD and identifies PGRN as an essential factor for GCase's lysosomal localization. These findings not only provide new insight into the pathogenesis of GD, but may also have implications for diagnosis and alternative targeted therapies for GD. Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequences of 17 Canadian isolates of Salmonella enterica subsp. enterica serovar Heidelberg from human, animal, and food sources.

Salmonella enterica subsp. enterica serovar Heidelberg is a highly clonal serovar frequently associated with foodborne illness. To facilitate subtyping efforts, we report fully assembled genome sequences of 17 Canadian S Heidelberg isolates including six pairs of epidemiologically related strains. The plasmid sequences of eight isolates contain several drug resistance genes. © Crown copyright 2016.


July 7, 2019  |  

A novel plasmid, pSx1, harboring a new Tn1696 derivative from extensively drug-resistant Shewanella xiamenensis encoding OXA-416.

The whole genome sequencing of extensively drug-resistant Shewanella xiamenensis T17 isolated from hospital effluents in Algeria revealed the presence of a novel 268.4?kb plasmid designated pSx1, which carries several antibiotic-resistance genes in the novel Tn1696 derivative (Tn6297), in addition to the chromosomal blaOXA-48-like gene (blaOXA-416). The presence of the plasmid was confirmed by nuclease S1-PFGE analysis and transformation by electroporation into Escherichia coli DH10B. Tn6297 contains an In27 class 1 integron harboring the dfrA12-orfF-aadA2 array, msr(E) and mph(E) associated with IS26; a new efflux pump multidrug resistance composite transposon delimited by two ISEc29s; Tn-tet harboring tetR and tetA(C); a class 1 integron with the qacG gene cassette; qnrVC6 and dfrA23 associated with ISCR1; and a complex class 1 integron In4-like containing aacC1, aadA1, blaVEB-16, catA2, sul1?, cmlA9, tetR, tetA(G), aac(6′)-II, and blaPSE-1. Its mer operon carries merB, but lacks merC, in contrast to Tn1696 and Tn21. This study represents the first characterization of a multidrug-resistant transposon and multidrug resistance plasmid in Shewanella and is the first report of blaOXA-416 in Algeria, providing evidence that Shewanella spp. could be an important reservoir and vehicle for drug resistance genes.


July 7, 2019  |  

Function and phylogeny of bacterial butyryl coenzyme A: acetate transferases and their diversity in the proximal colon of swine.

Studying the host-associated butyrate-producing bacterial community is important, because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl coenzyme A (CoA):acetate-CoA transferase (EC 2.3.8.3) as a gene of primary importance for butyrate production in intestinal ecosystems; however, this gene family (but) remains poorly defined. We developed tools for the analysis of butyrate-producing bacteria based on 12 putative but genes identified in the genomes of nine butyrate-producing bacteria obtained from the swine intestinal tract. Functional analyses revealed that eight of these genes had strong But enzyme activity. When but paralogues were found within a genome, only one gene per genome encoded strong activity, with the exception of one strain in which no gene encoded strong But activity. Degenerate primers were designed to amplify the functional but genes and were tested by amplifying environmental but sequences from DNA and RNA extracted from swine colonic contents. The results show diverse but sequences from swine-associated butyrate-producing bacteria, most of which clustered near functionally confirmed sequences. Here, we describe tools and a framework that allow the bacterial butyrate-producing community to be profiled in the context of animal health and disease.Butyrate is a compound produced by the microbiota in the intestinal tracts of animals. This compound is of critical importance for intestinal health, and yet studying its production by diverse intestinal bacteria is technically challenging. Here, we present an additional way to study the butyrate-producing community of bacteria using one degenerate primer set that selectively targets genes experimentally demonstrated to encode butyrate production. This work will enable researchers to more easily study this very important bacterial function that has implications for host health and resistance to disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Closed complete genome sequences of two nontypeable Haemophilus influenzae strains containing novel modA alleles from the sputum of patients with chronic obstructive pulmonary disease.

Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease (COPD). Here, we report the complete genome sequences of NTHi strains 10P129H1 and 84P36H1, isolated from COPD patients, which contain the phase-variable epigenetic regulators ModA15 and ModA18, respectively.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.