Menu
April 21, 2020

An efficient gene disruption system for the nematophagous fungus Purpureocillium lavendulum.

The fungus Purpureocillium lavendulum (formally Paecilomyces lilacinus) is a natural enemy of insects and plant-parasitic nematodes, and has been used as an important bio-control agent against agricultural pests all over the world. In order to understand the genetic mechanisms governing its biocontrol efficiency and other biological processes, an effective gene disruption system is needed. Here we report the development of an efficient system which integrates selective markers that differ from Purpureocillium lilacinum, a one-step construction method for gene knockout plasmids, and a ku80 knockout strain for efficient homologous recombination. With this system, we effectively disrupted the transcription factors in the central regulation pathway of sporulation and a serine protease which were contributed to nematode infection, demonstrating this system as an efficient gene disrupting system for further characterization of genes involved in the development and pathogenesis of this fungus. Copyright © 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved.


April 21, 2020

Smashing Barriers in Biolistic Plant Transformation.

A foundation of modern biotechnology is the ability to stably introduce foreign DNA into an organism. The two most widely used methods, Agrobacterium-mediated transformation and biolistics, are both steeped in a rich history of creative exploration into the molecular unknown. Agrobacterium research accelerated in the early 1970s, particularly with the discovery of the large Ti (tumor-inducing) plasmid of Agrobacterium that contained a region of transfer DNA (T-DNA). Culturing plant calli in autoclaved jelly jars, and long before the advent of PCR, Southern blots were first used to show that T-DNA fragments could stably integrate into the nuclear genome (Chilton et al., 1980; Chilton, 2001). On the other hand, the first manufactured biolistic “gene gun” was an actual gun; it shot a blank .22 caliber cartridge loaded with DNA-coated tungsten shards to integrate foreign DNA into the nuclear genome. While it has long been known that biolistic transformation violently integrates DNA in a largely random, unpredictable and imprecise way, the cellular mechanisms of damage repair and successful integration remain a complicated issue to disentangle.


April 21, 2020

Complete mitochondrial genome of Hemiptelea davidii (Ulmaceae) and phylogenetic analysis

Hemiptelea davidii (Hance) Planch is a potential valuable forest tree in arid sandy environments. Here, the complete mitochondrial genome of H. davidii was assembled using a combination of the PacBio Sequel data and the Illumina Hiseq data. The mitochondrial genome is 460,941bp in length, including 37 protein-coding genes, 19 tRNA genes, and three rRNA genes. The GC content of the whole mito- chondrial genome is 44.84%. Phylogenetic analyses indicated that H. davidii is close with Cannabis and Morus species.


April 21, 2020

Retrospective whole-genome sequencing analysis distinguished PFGE and drug-resistance-matched retail meat and clinical Salmonella isolates.

Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based on PFGE and AST results, to retrospectively resolve their genetic relatedness and identify antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses revealed that the retail meat isolates within S. Heidelberg, S. Typhimurium var. O5- subset 1 and S. Typhimurium var. O5- subset 2 were separated from each primary PFGE pattern-matched clinical isolate by 6-12, 41-96 and 21-81 SNPs, respectively. Fifteen resistance genes were identified across all isolates, including fosA7, a gene only recently found in a limited number of Salmonella and a =95?%?phenotype to genotype correlation was observed for all tested antimicrobials. Moreover, AMR was primarily plasmid-mediated in S. Heidelberg and S. Typhimurium var. O5- subset 2, whereas AMR was chromosomally carried in S. Typhimurium var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates. Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing integrated surveillance for Salmonella from multiple sources.


April 21, 2020

Complete chloroplast genome of the plant Stahlianthus Involucratus (Zingiberaceae)

The first complete chloroplast genome of Stahlianthus involucratus (Zingiberaceae) was reported in this study. The S. involucratus chloroplast genome was 163,300bp in length and consisted of one large sin- gle copy (LSC) region of 87,498bp, one small single copy (SSC) region of 15,568bp, and a pair of inverted repeat (IR) regions 30,117bp. It encoded 141 genes, including 87 protein-coding genes (79 PCG species), 46 tRNA genes (28 tRNA species) and 8 rRNA genes (4 rRNA species). The phylogenetic analysis based on single nucleotide polymorphisms strongly supported that S. involucratus, Curcuma roscoeana and Curcuma longa formed a cluster in group CurcumaII within family Zingiberaceae.


April 21, 2020

A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy.

Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.


April 21, 2020

Genome Sequence of Bacillus Velezensis W1, A Strain with Strong Acaricidal Activity against Two-Spotted Spider Mite (Tetranychus Urticae)

Bacillus velezensis W1, isolated from two-spotted spider mites that had died naturally, is a patented strain with strong capability to cause mortality of the phytophagous mite Tetranychus urticae. The whole genome of W1 was completely sequenced with a combination of an Illumina Miseq platform (400-bp paired-end) with 2 × 250 bases and a Pacific Biosciences (PaBio) RS II Single Molecule Real Time (SMRT) sequencing platform using a 20 kb SMRTbellTM template library. Here, we report the complete genome sequence of B. velezensis W1, including one circular chromosome of 4,237,431 bp encoding 4,352 genes with GC content of 45.84%, providing insights into the genomic basis of its acaricidal activity and facilitating its application in red spider mite biocontrol.


April 21, 2020

Multidrug-Resistant Bovine Salmonellosis Predisposing for Severe Human Clostridial Myonecrosis.

BACKGROUND The overuse of antibiotics in animals promotes the development of multidrug-resistance predisposing for severe polymicrobial human infections. CASE REPORT We describe a case of spontaneous clostridial myonecrosis due to ulcerative colonic infection with multidrug-resistant Salmonella enterica subsp. enterica, serotype 4,[5],12: i: -. Serotyping of the colonic Salmonella isolate in the index case and the bovine farm outbreak isolates from where the patient worked indicated they were both serotype I 4,[5],12: i: -, which is linked with a multitude of large reported disease outbreaks. Further analysis revealed that they are highly genetically related and antibiotic susceptibility testing indicated that they are phenotypically identical. CONCLUSIONS Enteritis due to human acquisition of multidrug-resistant Salmonella from cattle led to the invasion and dissemination of Clostridium septicum resulting in devastating myonecrotic disease. This highlights the ramifications of co-existence and evolution of pathogenic bacteria in animals and humans and lends support to reducing the use of antibiotics in animals.


April 21, 2020

Complete chloroplast genome sequence of Amomum villosum

The first complete chloroplast genome of Amomum villosum (Zingiberaceae) was reported in this study. The A. villosum genome was 163,608bp in length, and comprised a pair of inverted repeat (IR) regions of 29,820bp each, a large single-copy (LSC) region of 88,680bp, and a small single-copy (SSC) region of 15,288bp. It encoded 141 genes, including 87 protein-coding genes (79 PCG species), 46 tRNA genes (28 tRNA species), and 8 rRNA genes (4 rRNA species). The overall AT content was 63.92%. Phylogenetic analysis showed that A. villosum was closely related to two species Amomum kravanh and Amomum compactum within the genus Amomum in family Zingiberaceae.


April 21, 2020

Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in Streptomyces sp. CC0208.

Marine Streptomyces sp. CC0208 isolated from the Bohai Bay showed high efficiency of cellulose degradation under optimized fermentation parameters. Also, as one of the bioinformatics-based approaches for the discovery of novel natural product and enzyme effectively, genome mining has been developed and applied widely. Herein, we reported the complete genome sequence of Streptomyces sp. CC0208.Whole-genome sequencing analysis revealed a genome size of 9,325,981?bp with a linear chromosome, GC content of 70.59% and 8487 protein-coding genes. Abundant genes have predicted functions in antibiotic metabolism and enzymes. A 20 enzymes closely associated with cellulose degradation were discovered. A total of 25 biosynthetic gene clusters (BGCs) of secondary metabolites were identified, including diverse classes of natural products. The availability of genome sequence of Streptomyces sp. CC0208 not only will assist in cracking the mechanism of cellulose degradation but also will provide the insights into the significant secondary metabolic potentials for the production of diverse compound classes based on rational strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


April 21, 2020

Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy.

The locus for familial cortical myoclonic tremor with epilepsy (FCMTE) has long been mapped to 8q24 in linkage studies, but the causative mutations remain unclear. Recently, expansions of intronic TTTCA and TTTTA repeat motifs within SAMD12 were found to be involved in the pathogenesis of FCMTE in Japanese pedigrees. We aim to identify the causative mutations of FCMTE in Chinese pedigrees.We performed genetic linkage analysis by microsatellite markers in a five-generation Chinese pedigree with 55 members. We also used array-comparative genomic hybridisation (CGH) and next-generation sequencing (NGS) technologies (whole-exome sequencing, capture region deep sequencing and whole-genome sequencing) to identify the causative mutations in the disease locus. Recently, we used low-coverage (~10×) long-read genome sequencing (LRS) on the PacBio Sequel and Oxford Nanopore platforms to identify the causative mutations, and used repeat-primed PCR for validation of the repeat expansions.Linkage analysis mapped the disease locus to 8q23.3-24.23. Array-CGH and NGS failed to identify causative mutations in this locus. LRS identified the intronic TTTCA and TTTTA repeat expansions in SAMD12 as the causative mutations, thus corroborating the recently published results in Japanese pedigrees.We identified the pentanucleotide repeat expansion in SAMD12 as the causative mutation in Chinese FCMTE pedigrees. Our study also suggested that LRS is an effective tool for molecular diagnosis of genetic disorders, especially for neurological diseases that cannot be positively diagnosed by conventional clinical microarray and NGS technologies. © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.


April 21, 2020

Complete chloroplast genome sequence of Carthamus tinctorius L. from PacBio Sequel Platform

Carthamus tinctorius L, also known as safflower, is an important oil crop planted worldwide. The com- plete chloroplast (cp) genome was reported in this study using the PacBio Sequel Platform. The cp genome with a total size of 152,963bp consisted of two inverted repeats (25,128bp) separated by a large single-copy region (84,124bp) and a small single-copy region (18,583bp). Further annotation revealed the cp genome contains 112 genes, including 79 protein-coding genes, 29 tRNA genes, and 4 rRNA genes. The information of the cp genome will be useful for investigation of evolution and molecular breeding of safflower in the future.


April 21, 2020

Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water.

Flavobacteriia are abundant in many marine environments including hadal waters, as demonstrated recently. However, it is unclear how this flavobacterial population adapts to hadal conditions. In this study, extensive comparative genomic analyses were performed for the flavobacterial strain Euzebyella marina RN62 isolated from the Mariana Trench hadal water in low abundance. The complete genome of RN62 possessed a considerable number of carbohydrate-active enzymes with a different composition. There was a predominance of GH family 13 proteins compared to closely related relatives, suggesting that RN62 has preserved a certain capacity for carbohydrate utilization and that the hadal ocean may hold an organic matter reservoir distinct from the surface ocean. Additionally, RN62 possessed potential intracellular cycling of the glycogen/starch pathway, which may serve as a strategy for carbon storage and consumption in response to nutrient pulse and starvation. Moreover, the discovery of higher glycoside hydrolase dissimilarities among Flavobacteriia, compared to peptidases and transporters, suggested variation in polysaccharide utilization related traits as an important ecophysiological factor in response to environmental alterations, such as decreased labile organic carbon in hadal waters. The presence of abundant toxin exporting, transcription and signal transduction related genes in RN62 may further help to survive in hadal conditions, including high pressure/low temperature.Copyright © 2019 Elsevier GmbH. All rights reserved.


April 21, 2020

Evolution of Goat’s Rue Rhizobia (Neorhizobium galegae): Analysis of Polymorphism of the Nitrogen Fixation and Nodule Formation Genes

The goat’s rue rhizobia (Neorhizobium galegae) represent a convenient model to study the evolution and speciation of symbiotic bacteria. This rhizobial species is composed of two biovars (bv. orientalis and bv. officinalis), which form N2-fixing nodules with certain species of goat’s rue (Galega orientalis and G. officinalis). The cross-inoculation between them results in the formation of nodules unable to fix nitrogen. On the basis of the data on the whole-genome sequencing, we studied the nucleotide polymorphism of 11 N. galegae strains isolated from the North Caucasus ecosystems, where G. orientalis has higher diversity than G. officinalis. The low level of differences in the polymorphism within the group of the sym genes in comparison with the nonsymbiotic genes can be associated with the active participation of host plants in the evolution of rhizobia. The intragenic polymorphism of bv. orientalis proved to be significantly higher than that of bv. officinalis. The level of polymorphism of nonsymbiotic genes was lower than that of the symbiotic genes, which are functionally more homogeneous. The divergence of the nitrogen fixation genes (nif/fix) is more pronounced than that of the nodule formation genes (nod) in the N. galegae biovars. These facts indicate the leading role of the host-specific nitrogen fixation in the evolution of the studied rizhobial species.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.