Menu
July 7, 2019  |  

Complete genome sequence of Clostridium estertheticum DSM 8809, a microbe identified in spoiled vacuum packed beef.

Blown pack spoilage (BPS) is a major issue for the beef industry. Etiological agents of BPS involve members of a group of Clostridium species, including Clostridium estertheticum which has the ability to produce gas, mostly carbon dioxide, under anaerobic psychotrophic growth conditions. This spore-forming bacterium grows slowly under laboratory conditions, and it can take up to 3 months to produce a workable culture. These characteristics have limited the study of this commercially challenging bacterium. Consequently information on this bacterium is limited and no effective controls are currently available to confidently detect and manage this production risk. In this study the complete genome of C. estertheticum DSM 8809 was determined by SMRT(®) sequencing. The genome consists of a circular chromosome of 4.7 Mbp along with a single plasmid carrying a potential tellurite resistance gene tehB and a Tn3-like resolvase-encoding gene tnpR. The genome sequence was searched for central metabolic pathways that would support its biochemical profile and several enzymes contributing to this phenotype were identified. Several putative antibiotic/biocide/metal resistance-encoding genes and virulence factors were also identified in the genome, a feature that requires further research. The availability of the genome sequence will provide a basic blueprint from which to develop valuable biomarkers that could support and improve the detection and control of this bacterium along the beef production chain.


July 7, 2019  |  

Complete sequence of a F33:A-:B- conjugative plasmid carrying the oqxAB, fosA3, and blaCTX-M-55 elements from a foodborne Escherichia coli strain.

This study reports the complete sequence of pE80, a conjugative IncFII plasmid recovered from an Escherichia coli strain isolated from chicken meat. This plasmid harbors multiple resistance determinants including oqxAB, fosA3, blaCTX-M-55, and blaTEM-1, and is a close variant of the recently reported p42-2 element, which was recovered from E. coli of veterinary source. Recovery of pE80 constitutes evidence that evolution or genetic re-arrangement of IncFII type plasmids residing in animal-borne organisms is an active event, which involves acquisition and integration of foreign resistance elements into the plasmid backbone. Dissemination of these plasmids may further compromise the effectiveness of current antimicrobial strategies.


July 7, 2019  |  

Complete genome of Vibrio parahaemolyticus FORC014 isolated from the toothfish.

Foodborne illness can occur due to various pathogenic bacteria such as Staphylococcus aureus, Escherichia coli and Vibrio parahaemolyticus, and can cause severe gastroenteritis symptoms. In this study, we completed the genome sequence of a foodborne pathogen V. parahaemolyticus FORC_014, which was isolated from suspected contaminated toothfish from South Korea. Additionally, we extended our knowledge of genomic characteristics of the FORC_014 strain through comparative analysis using the complete sequences of other V. parahaemolyticus strains whose complete genomes have previously been reported.The complete genome sequence of V. parahaemolyticus FORC_014 was generated using the PacBio RS platform with single molecule, real-time (SMRT) sequencing. The FORC_014 strain consists of two circular chromosomes (3,241,330 bp for chromosome 1 and 1,997,247 bp for chromosome 2), one plasmid (51,383 bp), and one putative phage sequence (96,896 bp). The genome contains a total of 4274 putative protein coding sequences, 126 tRNA genes and 34 rRNA genes. Furthermore, we found 33 type III secretion system 1 (T3SS1) related proteins and 15 type III secretion system 2 (T3SS2) related proteins on chromosome 1. This is the first reported result of Type III secretion system 2 located on chromosome 1 of V. parahaemolyticus without thermostable direct hemolysin (tdh) and thermostable direct hemolysin-related hemolysin (trh).Through investigation of the complete genome sequence of V. parahaemolyticus FORC_014, which differs from previously reported strains, we revealed two type III secretion systems (T3SS1, T3SS2) located on chromosome 1 which do not include tdh and trh genes. We also identified several virulence factors carried by our strain, including iron uptake system, hemolysin and secretion system. This result suggests that the FORC_014 strain may be one pathogen responsible for foodborne illness outbreak. Our results provide significant genomic clues which will assist in future understanding of virulence at the genomic level and help distinguish between clinical and non-clinical isolates.


July 7, 2019  |  

Investigation of and response to 2 plague cases, Yosemite National Park, California, USA, 2015.

In August 2015, plague was diagnosed for 2 persons who had visited Yosemite National Park in California, USA. One case was septicemic and the other bubonic. Subsequent environmental investigation identified probable locations of exposure for each patient and evidence of epizootic plague in other areas of the park. Transmission of Yersinia pestis was detected by testing rodent serum, fleas, and rodent carcasses. The environmental investigation and whole-genome multilocus sequence typing of Y. pestis isolates from the patients and environmental samples indicated that the patients had been exposed in different locations and that at least 2 distinct strains of Y. pestis were circulating among vector-host populations in the area. Public education efforts and insecticide applications in select areas to control rodent fleas probably reduced the risk for plague transmission to park visitors and staff.


July 7, 2019  |  

The genome of the toluene-degrading Pseudomonas veronii strain 1YdBTEX2 and its differential gene expression in contaminated sand.

The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.


July 7, 2019  |  

Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid.

Genomic studies on fungal species with hydrolytic activity have gained increased attention due to their great biotechnological potential for biomass-based biofuel production. The amylolytic yeast Saccharomycopsis fibuligera has served as a good source of enzymes and genes involved in saccharification. Despite its long history of use in food fermentation and bioethanol production, very little is known about the basic physiology and genomic features of S. fibuligera.We performed whole-genome (WG) de novo sequencing and complete assembly of S. fibuligera KJJ81 and KPH12, two isolates from wheat-based Nuruk in Korea. Intriguingly, the KJJ81 genome (~38 Mb) was revealed as a hybrid between the KPH12 genome (~18 Mb) and another unidentified genome sharing 88.1% nucleotide identity with the KPH12 genome. The seven chromosome pairs of KJJ81 subgenomes exhibit highly conserved synteny, indicating a very recent hybridization event. The phylogeny inferred from WG comparisons showed an early divergence of S. fibuligera before the separation of the CTG and Saccharomycetaceae clades in the subphylum Saccharomycotina. Reconstructed carbon and sulfur metabolic pathways, coupled with RNA-Seq analysis, suggested a marginal Crabtree effect under high glucose and activation of sulfur metabolism toward methionine biosynthesis under sulfur limitation in this yeast. Notably, the lack of sulfate assimilation genes in the S. fibuligera genome reflects a unique phenotype for Saccharomycopsis clades as natural sulfur auxotrophs. Extended gene families, including novel genes involved in saccharification and proteolysis, were identified. Moreover, comparative genome analysis of S. fibuligera ATCC 36309, an isolate from chalky rye bread in Germany, revealed that an interchromosomal translocation occurred in the KPH12 genome before the generation of the KJJ81 hybrid genome.The completely sequenced S. fibuligera genome with high-quality annotation and RNA-Seq analysis establishes an important foundation for functional inference of S. fibuligera in the degradation of fermentation mash. The gene inventory facilitates the discovery of new genes applicable to the production of novel valuable enzymes and chemicals. Moreover, as the first gapless genome assembly in the genus Saccharomycopsis including members with desirable traits for bioconversion, the unique genomic features of S. fibuligera and its hybrid will provide in-depth insights into fungal genome dynamics as evolutionary adaptation.


July 7, 2019  |  

Genome sequence of Prosthecochloris sp. strain CIB 2401 of the phylum Chlorobi.

To date, only 13 genomes of green sulfur bacteria (family Chlorobiaceae) have been sequenced. The sequenced strains do not cover the full phylogenetic diversity of the family. We determined the complete genome sequence of Prosthecochloris sp. strain CIB 2401, thereby increasing the genome information for the poorly represented marine Chlorobiaceae. Copyright © 2016 Nabhan et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.