Menu
July 7, 2019  |  

The genome of the toluene-degrading Pseudomonas veronii strain 1YdBTEX2 and its differential gene expression in contaminated sand.

Authors: Morales, Marian and Sentchilo, Vladimir and Bertelli, Claire and Komljenovic, Andrea and Kryuchkova-Mostacci, Nadezda and Bourdilloud, Audrey and Linke, Burkhard and Goesmann, Alexander and Harshman, Keith and Segers, Francisca and Delapierre, Fabien and Fiorucci, Damien and Seppey, Mathieu and Trofimenco, Evgeniya and Berra, Pauline and El Taher, Athimed and Loiseau, Chloé and Roggero, Dejan and Sulfiotti, Madeleine and Etienne, Angela and Ruiz Buendia, Gustavo and Pillard, Loïc and Escoriza, Angelique and Moritz, Roxane and Schneider, Cedric and Alfonso, Esteban and Ben Jeddou, Fatma and Selmoni, Oliver and Resch, Gregory and Greub, Gilbert and Emery, Olivier and Dubey, Manupriyam and Pillonel, Trestan and Robinson-Rechavi, Marc and van der Meer, Jan Roelof

The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.

Journal: PloS one
DOI: 10.1371/journal.pone.0165850
Year: 2016

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.