Menu
July 7, 2019

Genome sequence of Xanthomonas sacchari R1, a biocontrol bacterium isolated from the rice seed.

Xanthomonas sacchari, was first identified as a pathogenic bacterium isolated from diseased sugarcane in Guadeloupe. In this study, R1 was first isolated from rice seed samples from Philippines in 2002. The antagonistic ability against several rice pathogens raises our attention. The genomic feature of this strain was described in this paper. The total genome size of X. sacchari R1 is 5,000,479bp with 4315 coding sequences (CDS), 59 tRNAs, 2rRNAs and one plasmid. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019

Genome sequence of Pseudomonas parafulva CRS01-1, an antagonistic bacterium isolated from rice field.

Pseudomonas parafulva (formerly known as Pseudomonas fulva) is an antagonistic bacterium against several rice bacterial and fungal diseases. The total genome size of P. parafulva CRS01-1 is 5,087,619bp with 4389 coding sequences (CDSs), 77 tRNAs, and 7 rRNAs. The annotated full genome sequence of the P. parafulva CRS01-1 strain might shed light on its role as an antagonistic bacterium. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019

Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339(T).

Muricauda lutaonensis KCTC 22339(T) is a yellow-pigmented, gram-negative, rod-shaped bacterium that was isolated from a coastal hot spring of a volcanic island in the Pacific Ocean, off the eastern coast of Taiwan. We here report the complete genome of M. lutaonensis KCTC 22339(T), which consists of 3,274,259bp with the G+C content of 44.97%. The completion of the M. lutaonensis genome sequence is expected to provide a valuable resource for understanding the secondary metabolic pathways related to bacterial pigmentation. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Draft genome sequence of Alicycliphilus sp. B1, an N-acylhomoserine lactone-producing bacterium, isolated from activated sludge.

We report here the draft genome sequence of Alicycliphilus sp. B1, isolated from activated sludge in a wastewater treatment plant of an electronic component factory as an N-acylhomoserine lactone-producing strain. The draft genome is 7,465,959 bp in length, with 59 large contigs. About 7,391 protein-coding genes, 82 tRNAs, and 13 rRNAs are predicted from this assembly. Copyright © 2015 Okutsu et al.


July 7, 2019

What caused the outbreak of ESBL-producing Klebsiella pneumoniae in a neonatal intensive care unit, Germany 2009 to 2012? Reconstructing transmission with epidemiological analysis and whole-genome sequencing.

We aimed to retrospectively reconstruct the timing of transmission events and pathways in order to understand why extensive preventive measures and investigations were not sufficient to prevent new cases.We extracted available information from patient charts to describe cases and to compare them to the normal population of the ward. We conducted a cohort study to identify risk factors for pathogen acquisition. We sequenced the available isolates to determine the phylogenetic relatedness of Klebsiella pneumoniae isolates on the basis of their genome sequences.The investigation comprises 37 cases and the 10 cases with ESBL (extended-spectrum beta-lactamase)-producing K. pneumoniae bloodstream infection. Descriptive epidemiology indicated that a continuous transmission from person to person was most likely. Results from the cohort study showed that ‘frequent manipulation’ (a proxy for increased exposure to medical procedures) was significantly associated with being a case (RR 1.44, 95% CI 1.02 to 2.19). Genome sequences revealed that all 48 bacterial isolates available for sequencing from 31 cases were closely related (maximum genetic distance, 12 single nucleotide polymorphisms). Based on our calculation of evolutionary rate and sequence diversity, we estimate that the outbreak strain was endemic since 2008. Epidemiological and phylogenetic analyses consistently indicated that there were additional, undiscovered cases prior to the onset of microbiological screening and that the spread of the pathogen remained undetected over several years, driven predominantly by person-to-person transmission. Whole-genome sequencing provided valuable information on the onset, course and size of the outbreak, and on possible ways of transmission. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.


July 7, 2019

Complete genome sequence of Serratia multitudinisentens RB-25(T), a novel chitinolytic bacterium.

Serratia multitudinisentens RB-25(T) (=DSM 28811(T) =LMG 28304(T)) is a newly proposed type strain in the genus of Serratia isolated from a municipal landfill site. Here, we present the complete genome of S. multitudinisentens RB-25(T) which contains a complete chitinase operon and other chitin and N-acetylglucosamine utilisation enzymes. To our knowledge, this is the first report of the complete genome sequence of this novel isolate and its chitinase gene discovery. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequences of Caldicellulosiruptor sp. strain Rt8.B8, Caldicellulosiruptor sp. strain Wai35.B1, and “Thermoanaerobacter cellulolyticus”.

The genus Caldicellulosiruptor contains extremely thermophilic, cellulolytic bacteria capable of lignocellulose deconstruction. Currently, complete genome sequences for eleven Caldicellulosiruptor species are available. Here, we report genome sequences for three additional Caldicellulosiruptor species: Rt8.B8 DSM 8990 (New Zealand), Wai35.B1 DSM 8977 (New Zealand), and “Thermoanaerobacter cellulolyticus” strain NA10 DSM 8991 (Japan). Copyright © 2015 Lee et al.


July 7, 2019

Complete genome sequence of ER2796, a DNA methyltransferase-deficient strain of Escherichia coli K-12.

We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems.


July 7, 2019

Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia.

Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.


July 7, 2019

Genome sequence of Penicillium capsulatum strain ATCC 48735, a rare Penicillium species used in paper manufactories but that recently caused invasive infection.

The genus Penicillium phylogenetically belongs to Trichocomaceae, with approximately 300 reported species. The majority of these species are saprobic and commonly occur in soil. This paper reports the genome sequence of Penicillium capsulatum strain ATCC 48735, a rare Penicillium species used in paper manufactories and that was recently reported as a human-invasive opportunist. Copyright © 2015 Yang et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.