September 22, 2019  |  

Next-generation approaches to advancing eco-immunogenomic research in critically endangered primates.

High-throughput sequencing platforms are generating massive amounts of genomic data from nonmodel species, and these data sets are valuable resources that can be mined to advance a number of research areas. An example is the growing amount of transcriptome data that allow for examination of gene expression in nonmodel species. Here, we show how publicly available transcriptome data from nonmodel primates can be used to design novel research focused on immunogenomics. We mined transcriptome data from the world’s most endangered group of primates, the lemurs of Madagascar, for sequences corresponding to immunoglobulins. Our results confirmed homology between strepsirrhine and haplorrhine primate immunoglobulins and allowed for high-throughput sequencing of expressed antibodies (Ig-seq) in Coquerel’s sifaka (Propithecus coquereli). Using both Pacific Biosciences RS and Ion Torrent PGM sequencing, we performed Ig-seq on two individuals of Coquerel’s sifaka. We generated over 150 000 sequences of expressed antibodies, allowing for molecular characterization of the antigen-binding region. Our analyses suggest that similar VDJ expression patterns exist across all primates, with sequences closely related to the human VH 3 immunoglobulin family being heavily represented in sifaka antibodies. Moreover, the antigen-binding region of sifaka antibodies exhibited similar amino acid variation with respect to haplorrhine primates. Our study represents the first attempt to characterize sequence diversity of the expressed antibody repertoire in a species of lemur. We anticipate that methods similar to ours will provide the framework for investigating the adaptive immune response in wild populations of other nonmodel organisms and can be used to advance the burgeoning field of eco-immunology. © 2014 John Wiley & Sons Ltd.


July 19, 2019  |  

ARTISAN PCR: rapid identification of full-length immunoglobulin rearrangements without primer binding bias.

B cells recognize specific antigens by their membrane-bound B-cell receptor (BCR). Functional BCR genes are assembled in pre-B cells by recombination of the variable (V), diversity (D) and joining (J) genes [V(D)J recombination]. When B cells participate in germinal centre reactions, non-templated point mutations are introduced into BCR genes by somatic hypermutation (SHM) (Rajewsky, 1996). V(D)J recombination and SHM create virtually unlimited BCR repertoires.


July 19, 2019  |  

The Florida manatee (Trichechus manatus latirostris) T cell receptor loci exhibit V subgroup synteny and chain-specific evolution.

The Florida manatee (Trichechus manatus latirostris) has limited diversity in the immunoglobulin heavy chain. We therefore investigated the antigen receptor loci of the other arm of the adaptive immune system: the T cell receptor. Manatees are the first species from Afrotheria, a basal eutherian superorder, to have an in-depth characterization of all T cell receptor loci. By annotating the genome and expressed transcripts, we found that each chain has distinct features that correlates to their individual functions. The genomic organization also plays a role in modulating sequence conservation between species. There were extensive V subgroup synteny blocks in the TRA and TRB loci between T. m. latirostris and human. Increased genomic locus complexity correlated to increased locus synteny. We also identified evidence for a VHD pseudogene for the first time in a eutherian mammal. These findings emphasize the value of including species within this basal eutherian radiation in comparative studies. Copyright © 2018. Published by Elsevier Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.