Menu
July 7, 2019  |  

Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens.

Intestinimonas is a newly described bacterial genus with representative strains present in the intestinal tract of human and other animals. Despite unique metabolic features including the production of butyrate from both sugars and amino acids, there is to date no data on their diversity, ecology, and physiology. Using a comprehensive phylogenetic approach, Intestinimomas was found to include at least three species that colonize primarily the human and mouse intestine. We focused on the most common and cultivable species of the genus, Intestinimonas butyriciproducens, and performed detailed genomic and physiological comparison of strains SRB521(T) and AF211, isolated from the mouse and human gut respectively. The complete 3.3-Mb genomic sequences of both strains were highly similar with 98.8% average nucleotide identity, testifying to their assignment to one single species. However, thorough analysis revealed significant genomic rearrangements, variations in phage-derived sequences, and the presence of new CRISPR sequences in both strains. Moreover, strain AF211 appeared to be more efficient than strain SRB521(T) in the conversion of the sugars arabinose and galactose. In conclusion, this study provides genomic and physiological insight into Intestinimonas butyriciproducens, a prevalent butyrate-producing species, differentiating strains that originate from the mouse and human gut.© 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and JohnWiley & Sons Ltd.


July 7, 2019  |  

Scoping the effectiveness and evolutionary obstacles in using plasmid-dependent phages to fight antibiotic resistance.

To investigate the potential evolutionary obstacles in the sustainable therapeutic use of plasmid-dependent phages to control the clinically important conjugative plasmid-mediated dissemination of antibiotic resistance genes to pathogenic bacteria.The lytic plasmid-dependent phage PRD1 and the multiresistance conferring plasmid RP4 in an Escherichia coli host were utilized to assess the genetic and phenotypic changes induced by combined phage and antibiotic selection.Resistance to PRD1 was always coupled with either completely lost or greatly reduced conjugation ability. Reversion to full conjugation efficiency was found to be rare, and it also restored the susceptibility to plasmid-dependent phages. Consequently, plasmid-dependent phages constitute an interesting candidate for development of sustainable anticonjugation/antiresistance therapeutic applications.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.