Menu
July 7, 2019  |  

Complete genome sequence of Bordetella pertussis Pelita III, the production strain for an Indonesian whole-cell pertussis vaccine.

PT Bio Farma, the sole World Health Organization-approved Indonesian vaccine producer, manufactures a whole-cell whooping cough vaccine (wP) that, as part of a pentavalent diphtheria-tetanus-pertussis/hepatitis B/Haemophilus influenzae b (DTP/HB/Hib) vaccine, is used in Indonesia and many other countries. We report here the whole-genome sequence for Bordetella pertussis Pelita III, PT Bio Farma’s wP production strain. Copyright © 2017 Efendi et al.


July 7, 2019  |  

Whole genome sequencing and analysis of Campylobacter coli YH502 from retail chicken reveals a plasmid-borne type VI secretion system.

Campylobacter is a major cause of foodborne illnesses worldwide. Campylobacter infections, commonly caused by ingestion of undercooked poultry and meat products, can lead to gastroenteritis and chronic reactive arthritis in humans. Whole genome sequencing (WGS) is a powerful technology that provides comprehensive genetic information about bacteria and is increasingly being applied to study foodborne pathogens: e.g., evolution, epidemiology/outbreak investigation, and detection. Herein we report the complete genome sequence of Campylobacter coli strain YH502 isolated from retail chicken in the United States. WGS, de novo assembly, and annotation of the genome revealed a chromosome of 1,718,974 bp and a mega-plasmid (pCOS502) of 125,964 bp. GC content of the genome was 31.2% with 1931 coding sequences and 53 non-coding RNAs. Multiple virulence factors including a plasmid-borne type VI secretion system and antimicrobial resistance genes (beta-lactams, fluoroquinolones, and aminoglycoside) were found. The presence of T6SS in a mobile genetic element (plasmid) suggests plausible horizontal transfer of these virulence genes to other organisms. The C. coli YH502 genome also harbors CRISPR sequences and associated proteins. Phylogenetic analysis based on average nucleotide identity and single nucleotide polymorphisms identified closely related C. coli genomes available in the NCBI database. Taken together, the analyzed genomic data of this potentially virulent strain of C. coli will facilitate further understanding of this important foodborne pathogen most likely leading to better control strategies. The chromosome and plasmid sequences of C. coli YH502 have been deposited in GenBank under the accession numbers CP018900.1 and CP018901.1, respectively.


July 7, 2019  |  

The genome of the cotton bacterial blight pathogen Xanthomonas citri pv. malvacearum strain MSCT1.

Xanthomonas citri pv. malvacearum is a major pathogen of cotton, Gossypium hirsutum L.. In this study we report the complete genome of the X. citri pv. malvacearum strain MSCT1 assembled from long read DNA sequencing technology. The MSCT1 genome is the first X. citri pv. malvacearum genome with complete coding regions for X. citri pv. malvacearum transcriptional activator-like effectors. In addition functional and structural annotations are presented in this study that will provide a foundation for future pathogenesis studies with MSCT1.


July 7, 2019  |  

Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone.

Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O2, as indicated by the presence of genes encoding aa3-type cytochrome c oxidases, but not the cbb3-type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II).


July 7, 2019  |  

Complete genome sequences of two strains of the meat spoilage bacterium Brochothrix thermosphacta isolated from ground chicken.

Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT) technology and are the first complete genome sequences reported for B. thermosphacta.


July 7, 2019  |  

Horizontal gene acquisitions, mobile element proliferation, and genome decay in the host-restricted plant pathogen Erwinia tracheiphila.

Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Silicon content of individual cells of Synechococcus from the North Atlantic Ocean

The widely distributed marine cyanobacterium Synechococcus is thought to exert an influence on the marine silicon (Si) cycle through its high cellular Si relative to organic content. There are few measurements of Si in natural populations of Synechococcus, however, and the degree to which Synechococcus from various oligotrophic field sites and depths accumulate the element is unknown. We used synchrotron x-ray fluorescence to measure Si quotas in individual Synechococcus cells collected during three cruises in the western North Atlantic Ocean in the summer and fall, focusing on cells from the surface mixed layer (SML; <10 m) and the deep chlorophyll maximum (DCM). Individual cell quotas varied widely, from 1 to 4700 amol Si cell- 1, though the middle 50% of quotas ranged between 17 and 119 amol Si cell- 1. Mean station-specific quotas exhibited an even narrower range of 31–72 amol Si cell- 1. No significant differences in Si quotas were observed across cruises or among stations, and no effect of ambient silicic acid concentration on quotas was observed within the narrow range of silicic acid concentrations encountered (0.6–1.3 µM). Despite this small range in ambient silicic acid, cells collected from the SML had an average of two-fold more Si than cells collected from the DCM. Differences in Si content with depth may be related to observed differences in the dominant Synechococcus clades between the SML and DCM habitats, determined by petB gene sequencing.


July 7, 2019  |  

D1FHS, the type strain of the ammonia-oxidizing bacterium Nitrosococcus wardiae spec. nov.: enrichment, isolation, phylogenetic, and growth physiological characterization.

An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcus halophilus Nc4(T). The average nucleotide identity between the genomes of strain D1FHS and N. halophilus strain Nc4 is 89.5%. Known species in the genus Nitrosococcus are obligate aerobic chemolithotrophic ammonia-oxidizing bacteria adapted to and restricted to marine environments. The optimum growth (maximum nitrite production) conditions for D1FHS in a minimal salts medium are: 50 mM ammonium and 700 mM NaCl at pH of 7.5 to 8.0 and at 37°C in dark. Because pertinent conditions for other studied Nitrosococcus spp. are 100-200 mM ammonium and <700 mM NaCl at pH of 7.5 to 8.0 and at 28-32°C, D1FHS is physiologically distinct from other Nitrosococcus spp. in terms of substrate, salt, and thermal tolerance.


July 7, 2019  |  

Clustering of circular consensus sequences: accurate error correction and assembly of single molecule real-time reads from multiplexed amplicon libraries.

Targeted resequencing with high-throughput sequencing (HTS) platforms can be used to efficiently interrogate the genomes of large numbers of individuals. A critical issue for research and applications using HTS data, especially from long-read platforms, is error in base calling arising from technological limits and bioinformatic algorithms. We found that the community standard long amplicon analysis (LAA) module from Pacific Biosciences is prone to substantial bioinformatic errors that raise concerns about findings based on this pipeline, prompting the need for a new method.A single molecule real-time (SMRT) sequencing-error correction and assembly pipeline, C3S-LAA, was developed for libraries of pooled amplicons. By uniquely leveraging the structure of SMRT sequence data (comprised of multiple low quality subreads from which higher quality circular consensus sequences are formed) to cluster raw reads, C3S-LAA produced accurate consensus sequences and assemblies of overlapping amplicons from single sample and multiplexed libraries. In contrast, despite read depths in excess of 100X per amplicon, the standard long amplicon analysis module from Pacific Biosciences generated unexpected numbers of amplicon sequences with substantial inaccuracies in the consensus sequences. A bootstrap analysis showed that the C3S-LAA pipeline per se was effective at removing bioinformatic sources of error, but in rare cases a read depth of nearly 400X was not sufficient to overcome minor but systematic errors inherent to amplification or sequencing.C3S-LAA uses a divide and conquer processing algorithm for SMRT amplicon-sequence data that generates accurate consensus sequences and local sequence assemblies. Solving the confounding bioinformatic source of error in LAA allowed for the identification of limited instances of errors due to DNA amplification or sequencing of homopolymeric nucleotide tracts. For research and development in genomics, C3S-LAA allows meaningful conclusions and biological inferences to be made from accurately polished sequence output.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.