X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
June 1, 2017

A large gene family in fission yeast encodes spore killers that subvert Mendel’s law.

Spore killers in fungi are selfish genetic elements that distort Mendelian segregation in their favor. It remains unclear how many species harbor them and how diverse their mechanisms are. Here, we discover two spore killers from a natural isolate of the fission yeast Schizosaccharomyces pombe. Both killers belong to the previously uncharacterized wtf gene family with 25 members in the reference genome. These two killers act in strain-background-independent and genome-location-independent manners to perturb the maturation of spores not inheriting them. Spores carrying one killer are protected from its killing effect but not that of the other killer. The killing and…

Read More »

June 1, 2017

Conjugative ESBL plasmids differ in their potential to rescue susceptible bacteria via horizontal gene transfer in lethal antibiotic concentrations.

Emergence (and proliferation) of resistant pathogens under strong antibiotic selection is an evolutionary process where bacteria overcome the otherwise growth inhibiting or lethal concentration of antimicrobial substances. In this study, we set to investigate a largely unexplored mechanism, namely evolutionary rescue (that is, adaptive evolutionary change that restores positive growth to declining population and prevents extinction) via horizontal gene transfer, by which new resistant bacteria may emerge both in and out of clinical environments.

Read More »

May 16, 2017

Population genomic analysis of 1,777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: unexpected abundance of clonal group 307.

Klebsiella pneumoniae is a major human pathogen responsible for high morbidity and mortality rates. The emergence and spread of strains resistant to multiple antimicrobial agents and documented large nosocomial outbreaks are especially concerning. To develop new therapeutic strategies for K. pneumoniae, it is imperative to understand the population genomic structure of strains causing human infections. To address this knowledge gap, we sequenced the genomes of 1,777 extended-spectrum beta-lactamase-producing K. pneumoniae strains cultured from patients in the 2,000-bed Houston Methodist Hospital system between September 2011 and May 2015, representing a comprehensive, population-based strain sample. Strains of largely uncharacterized clonal group 307 (CG307) caused…

Read More »

April 24, 2017

Analysis of serial isolates of mcr-1-positive Escherichia coli reveals a highly active ISApl1 transposon.

The emergence of a transferable colistin resistance gene (mcr-1) is of global concern. The insertion sequence ISApl1 is a key component in the mobilization of this gene, but its role remains poorly understood. Six Escherichia coli isolates were cultured from the same patient over the course of 1 month in Germany and the United States after a brief hospitalization in Bahrain for an unconnected illness. Four carried mcr-1 as determined by real-time PCR, but two were negative. Two additional mcr-1-negative E. coli isolates were collected during follow-up surveillance 9 months later. All isolates were analyzed by whole-genome sequencing (WGS). WGS…

Read More »

April 1, 2017

Complex routes of nosocomial vancomycin-resistant Enterococcus faecium transmission revealed by genome sequencing.

Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of nosocomial infection. Here, we describe the utility of whole-genome sequencing in defining nosocomial VREfm transmission.A retrospective study at a single hospital in the United Kingdom identified 342 patients with E. faecium bloodstream infection over 7 years. Of these, 293 patients had a stored isolate and formed the basis for the study. The first stored isolate from each case was sequenced (200 VREfm [197 vanA, 2 vanB, and 1 isolate containing both vanA and vanB], 93 vancomycin-susceptible E. faecium) and epidemiological data were collected. Genomes were also available for E. faecium associated…

Read More »

March 16, 2017

Genomic confirmation of vancomycin-resistant Enterococcus transmission from deceased donor to liver transplant recipient.

In a liver transplant recipient with vancomycin-resistant Enterococcus (VRE) surgical site and bloodstream infection, a combination of pulsed-field gel electrophoresis, multilocus sequence typing, and whole genome sequencing identified that donor and recipient VRE isolates were highly similar when compared to time-matched hospital isolates. Comparison of de novo assembled isolate genomes was highly suggestive of transplant transmission rather than hospital-acquired transmission and also identified subtle internal rearrangements between donor and recipient missed by other genomic approaches. Given the improved resolution, whole-genome assembly of pathogen genomes is likely to become an essential tool for investigation of potential organ transplant transmissions.

Read More »

March 1, 2017

Chromosomal integration of the Klebsiella pneumoniae carbapenemase gene, blaKPC, in Klebsiella species is elusive but not rare.

Carbapenemase genes in Enterobacteriaceae are mostly described as being plasmid associated. However, the genetic context of carbapenemase genes is not always confirmed in epidemiological surveys, and the frequency of their chromosomal integration therefore is unknown. A previously sequenced collection of blaKPC-positive Enterobacteriaceae from a single U.S. institution (2007 to 2012; n = 281 isolates from 182 patients) was analyzed to identify chromosomal insertions of Tn4401, the transposon most frequently harboring blaKPC Using a combination of short- and long-read sequencing, we confirmed five independent chromosomal integration events from 6/182 (3%) patients, corresponding to 15/281 (5%) isolates. Three patients had isolates identified…

Read More »

March 1, 2017

Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history.

Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in Triaenops bats and 229E-like viruses circulating in Hipposideros bats, with the breakpoint located near 5' and 3' ends of…

Read More »

February 28, 2017

Characterization of hepatitis C virus (HCV) envelope diversification from acute to chronic infection within a sexually transmitted HCV cluster by using single-molecule, real-time sequencing.

In contrast to other available next-generation sequencing platforms, PacBio single-molecule, real-time (SMRT) sequencing has the advantage of generating long reads albeit with a relatively higher error rate in unprocessed data. Using this platform, we longitudinally sampled and sequenced the hepatitis C virus (HCV) envelope genome region (1,680 nucleotides [nt]) from individuals belonging to a cluster of sexually transmitted cases. All five subjects were coinfected with HIV-1 and a closely related strain of HCV genotype 4d. In total, 50 samples were analyzed by using SMRT sequencing. By using 7 passes of circular consensus sequencing, the error rate was reduced to 0.37%,…

Read More »

February 14, 2017

AGBT Virtual Poster: Interspecies interation amoung meat spoilage-related lactic acid bacteria

In this AGBT 2017 poster, the University of Helsinki’s Petri Auevinen reports on efforts to understand bacteria that grow on, and subsequently spoil, food. This analysis monitored DNA modifications and transcriptomic changes in three species of lactic acid bacteria. Scientists discovered that the organisms’ metabolic profiles change substantially when grown together compared to those cultured individually, and are now studying how Cas protein activity changes under these conditions too.

Read More »

February 1, 2017

Absence of genome reduction in diverse, facultative endohyphal bacteria.

Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and…

Read More »

January 12, 2017

Whole-genome sequences of Mycobacterium tuberculosis TB282 and TB284, a widespread and a unique strain, respectively, identified in a previous study of tuberculosis transmission in central Los Angeles, California, USA.

We report here the genome sequences of two Mycobacterium tuberculosis clinical isolates previously identified in central Los Angeles, CA, in the 1990s using a PacBio platform. Isolate TB282 represents a large-cluster strain that caused 27% of the tuberculosis cases, while TB284 represents a strain that caused disease in only one patient. Copyright © 2017 Zhang and Yang.

Read More »

January 1, 2017

Genomic analysis of 495 vancomycin-resistant Enterococcus faecium reveals broad dissemination of a vanA plasmid in more than 19 clones from Copenhagen, Denmark.

From 2012 to 2014, there has been a huge increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) in Copenhagen, Denmark, with 602 patients infected or colonized with VREfm in 2014 compared with just 22 in 2012. The objective of this study was to describe the genetic epidemiology of VREfm to assess the contribution of clonal spread and horizontal transfer of the vanA transposon (Tn1546) and plasmid in the dissemination of VREfm in hospitals.VREfm from Copenhagen, Denmark (2012-14) were whole-genome sequenced. The clonal structure was determined and the structure of Tn1546-like transposons was characterized. One VREfm isolate belonging to the largest clonal…

Read More »

December 15, 2016

Complete genome sequences of six Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway.

Here, we report the complete genome sequences of Legionella pneumophila isolates from two collocated outbreaks of Legionnaires' disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway. One clinical and two environmental isolates were sequenced from each outbreak. The genome of all six isolates consisted of a 3.36 Mb-chromosome, while the 2005 genomes featured an additional 68 kb-episome sharing high sequence similarity with the L. pneumophila Lens plasmid. All six genomes contained multiple mobile genetic elements including novel combinations of type-IVA secretion systems. A comparative genomics study will be launched to resolve the genetic relationship between the L. pneumophila isolates. Copyright © 2016 Dybwad et al.

Read More »

December 14, 2016

The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance.

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly…

Read More »

1 2 3 4 6

Subscribe for blog updates:

Archives