July 7, 2019  |  

Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

July 7, 2019  |  

Genomesequencing of Ralstonia solanacearum CQPS-1, a phylotype I strain collected from a highland area with continuous cropping of tobacco.

Ralstonia solanacearum, an agent of bacterial wilt, is a highly variable species with a broad host range and wide geographic distribution. As a species complex, it has extensive genetic diversity and its living environment is polymorphic like the lowland and the highland area, so more genomes are needed for studying population evolution and environment adaptation. In this paper, we reported the genome sequencing of R. solanacearum strain CQPS-1 isolated from wilted tobacco in Pengshui, Chongqing, China, a highland area with severely acidified soil and continuous cropping of tobacco more than 20 years. The comparative genomic analysis among different R. solanacearum strains was also performed. The completed genome size of CQPS-1 was 5.89 Mb and contained the chromosome (3.83 Mb) and the megaplasmid (2.06 Mb). A total of 5229 coding sequences were predicted (the chromosome and megaplasmid encoded 3573 and 1656 genes, respectively). A comparative analysis with eight strains from four phylotypes showed that there was some variation among the species, e.g., a large set of specific genes in CQPS-1. Type III secretion system gene cluster (hrp gene cluster) was conserved in CQPS-1 compared with the reference strain GMI1000. In addition, most genes coding core type III effectors were also conserved with GMI1000, but significant gene variation was found in the gene ripAA: the identity compared with strain GMI1000 was 75% and the hrpII box promoter in the upstream had significantly mutated. This study provided a potential resource for further understanding of the relationship between variation of pathogenicity factors and adaptation to the host environment.

July 7, 2019  |  

Genomes and virulence difference between two physiological races of Phytophthora nicotianae.

Black shank is a severe plant disease caused by the soil-borne pathogen Phytophthora nicotianae. Two physiological races of P. nicotianae, races 0 and 1, are predominantly observed in cultivated tobacco fields around the world. Race 0 has been reported to be more aggressive, having a shorter incubation period, and causing worse root rot symptoms, while race 1 causes more severe necrosis. The molecular mechanisms underlying the difference in virulence between race 0 and 1 remain elusive.We assembled and annotated the genomes of P. nicotianae races 0 and 1, which were obtained by a combination of PacBio single-molecular real-time sequencing and second-generation sequencing (both HiSeq and MiSeq platforms). Gene family analysis revealed a highly expanded ATP-binding cassette transporter gene family in P. nicotianae. Specifically, more RxLR effector genes were found in the genome of race 0 than in that of race 1. In addition, RxLR effector genes were found to be mainly distributed in gene-sparse, repeat-rich regions of the P. nicotianae genome.These results provide not only high quality reference genomes of P. nicotianae, but also insights into the infection mechanisms of P. nicotianae and its co-evolution with the host plant. They also reveal insights into the difference in virulence between the two physiological races.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.