July 7, 2019  |  

Toward a complete North American Borrelia miyamotoi genome.

Borrelia miyamotoi, of the relapsing-fever spirochete group, is an emerging tick-borne pathogen causing human illness in the northern hemisphere. Here, we present the chromosome, eight extrachromosomal linear plasmids, and a draft sequence for five circular and one linear plasmid of a Borrelia miyamotoi strain isolated from an Ixodes sp. tick from Connecticut, USA. Copyright © 2017 Kingry et al.


July 7, 2019  |  

Extremely low genomic diversity of Rickettsia japonica distributed in Japan.

Rickettsiae are obligate intracellular bacteria that have small genomes as a result of reductive evolution. Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as “spotted fevers”. The life cycle of SFG rickettsiae is closely associated with that of the tick, which is generally thought to act as a bacterial vector and reservoir that maintains the bacterium through transstadial and transovarial transmission. Each SFG member is thought to have adapted to a specific tick species, thus restricting the bacterial distribution to a relatively limited geographic region. These unique features of SFG rickettsiae allow investigation of how the genomes of such biologically and ecologically specialized bacteria evolve after genome reduction and the types of population structures that are generated. Here, we performed a nationwide, high-resolution phylogenetic analysis of Rickettsia japonica, an etiological agent of Japanese spotted fever that is distributed in Japan and Korea. The comparison of complete or nearly complete sequences obtained from 31 R. japonica strains isolated from various sources in Japan over the past 30 years demonstrated an extremely low level of genomic diversity. In particular, only 34 single nucleotide polymorphisms were identified among the 27 strains of the major lineage containing all clinical isolates and tick isolates from the three tick species. Our data provide novel insights into the biology and genome evolution of R. japonica, including the possibilities of recent clonal expansion and a long generation time in nature due to the long dormant phase associated with tick life cycles.© The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Completed genome sequences of Borrelia burgdorferi sensu stricto B31(NRZ) and closely related patient isolates from Europe.

Borrelia burgdorferi sensu stricto is a causative agent of human Lyme borreliosis in the United States and Europe. We report here the completed genome sequences of strain B31 isolated from a tick in the United States and two closely related strains from Europe, PAli and PAbe, which were isolated from patients with erythema migrans and neuroborreliosis, respectively. Copyright © 2017 Margos et al.


July 7, 2019  |  

The Babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction.

Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1a-B promoter. Comparison of in vitro growth between a hap2-KO B. bovis clonal line and its parental wild type strain showed that HAP2 is not required for the development of B. bovis in erythrocytes. However, xanthurenic acid-in vitro induction experiments of sexual stages of parasites recovered after tick transmission resulted in surface expression of HAP2 exclusively in sexual stage induced parasites. In addition, hap2-KO parasites were not able to develop such sexual stages as defined both by morphology and by expression of the B. bovis sexual marker genes 6-Cys A and B. Together, the data strongly suggests that tick midgut stage differential expression of hap2 is associated with the development of B. bovis sexual forms. Overall these studies are consistent with a role of HAP2 in tick stages of the parasite and suggest that HAP2 is a potential candidate for a transmission blocking vaccine against bovine babesiosis.


July 7, 2019  |  

Multiple and diverse vsp and vlp sequences in Borrelia miyamotoi, a hard tick-borne zoonotic pathogen.

Based on chromosome sequences, the human pathogen Borrelia miyamotoi phylogenetically clusters with species that cause relapsing fever. But atypically for relapsing fever agents, B. miyamotoi is transmitted not by soft ticks but by hard ticks, which also are vectors of Lyme disease Borrelia species. To further assess the relationships of B. miyamotoi to species that cause relapsing fever, I investigated extrachromosomal sequences of a North American strain with specific attention on plasmid-borne vsp and vlp genes, which are the underpinnings of antigenic variation during relapsing fever. For a hybrid approach to achieve assemblies that spanned more than one of the paralogous vsp and vlp genes, a database of short-reads from next-generation sequencing was supplemented with long-reads obtained with real-time DNA sequencing from single polymerase molecules. This yielded three contigs of 31, 16, and 11 kb, which each contained multiple and diverse sequences that were homologous to vsp and vlp genes of the relapsing fever agent B. hermsii. Two plasmid fragments had coding sequences for plasmid partition proteins that differed from each other from paralogous proteins for the megaplasmid and a small plasmid of B. miyamotoi. One of 4 vsp genes, vsp1, was present at two loci, one of which was downstream of a candiate prokaryotic promoter. A limited RNA-seq analysis of a population growing in the blood of mice indicated that of the 4 different vsp genes vsp1 was the one that was expressed. The findings indicate that B. miyamotoi has at least four types of plasmids, two or more of which bear vsp and vlp gene sequences that are as numerous and diverse as those of relapsing fever Borrelia. The database and insights from these findings provide a foundation for further investigations of the immune responses to this pathogen and of the capability of B. miyamotoi for antigenic variation.


July 7, 2019  |  

Transcriptional profiling the 150 kb linear megaplasmid of Borrelia turicatae suggests a role in vector colonization and initiating mammalian infection.

Adaptation is key for survival as vector-borne pathogens transmit between the arthropod and vertebrate, and temperature change is an environmental signal inducing alterations in gene expression of tick-borne spirochetes. While plasmids are often associated with adaptation, complex genomes of relapsing fever spirochetes have hindered progress in understanding the mechanisms of vector colonization and transmission. We utilized recent advances in genome sequencing to generate the most complete version of the Borrelia turicatae 150 kb linear megaplasmid (lp150). Additionally, a transcriptional analysis of open reading frames (ORFs) in lp150 was conducted and identified regions that were up-regulated during in vitro cultivation at tick-like growth temperatures (22°C), relative to bacteria grown at 35°C and infected murine blood. Evaluation of the 3′ end of lp150 identified a cluster of ORFs that code for putative surface lipoproteins. With a microbe’s surface proteome serving important roles in pathogenesis, we confirmed the ORFs expression in vitro and in the tick compared to spirochetes infecting murine blood. Transcriptional evaluation of lp150 indicates the plasmid likely has essential roles in vector colonization and/or initiating mammalian infection. These results also provide a much needed transcriptional framework to delineate the molecular mechanisms utilized by relapsing fever spirochetes during their enzootic cycle.


July 7, 2019  |  

Chromosome and plasmids of the tick-borne relapsing fever agent Borrelia hermsii.

The zoonotic pathogen Borrelia hermsii bears its multiple paralogous genes for variable antigens on several linear plasmids. Application of combined long-read and short-read next-generation sequencing provided complete sequences for antigen-encoding plasmids as well as other linear and circular plasmids and the linear chromosome of the genome. Copyright © 2016 Barbour.


July 7, 2019  |  

Chromosome and linear plasmid sequences of a 2015 human isolate of the tick-borne relapsing fever spirochete, Borrelia turicatae.

The sequences of the complete linear chromosome and 7 linear plasmids of the relapsing fever spirochete Borrelia turicatae are presented in this report. The 925,547 bp of chromosome and 380,211 bp of plasmid sequence were predicted to contain a total of 1,131 open reading frames, with an average G+C content of 29.7%. Copyright © 2016 Kingry et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.