X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
June 1, 2019

ORF Capture-Seq: a versatile method for targeted identification of full-length isoforms

Most human protein-coding genes are expressed as multiple isoforms. This in turn greatly expands the functional repertoire of the encoded proteome. While at least one reliable open reading frame (ORF) model has been assigned for every gene, the majority of alternative isoforms remains uncharacterized experimentally. This is primarily due to: i) vast differences of overall levels between different isoforms expressed from common genes, and ii) the difficulty of obtaining contiguous full-length ORF sequences. Here, we present ORF Capture-Seq (OCS), a flexible and cost-effective method that addresses both challenges for targeted full-length isoform sequencing applications using collections of cloned ORFs as…

Read More »

May 1, 2019

Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3.

To date, clinical sequencing has focused on genomic DNA using targeted panels and exome sequencing. Sequencing of a large hypertrophic cardiomyopathy (HCM) cohort revealed that positive identification of a disease-associated variant was returned in only 32% of patients, with an additional 15% receiving inconclusive results. When genome sequencing fails to reveal causative variants, the transcriptome may provide additional diagnostic clarity. A recent study examining patients with genetically undiagnosed muscle disorders found that RNA sequencing, when used as a complement to exome and whole genome sequencing, had an overall diagnosis rate of 35%.

Read More »

May 1, 2019

TSD: A Computational Tool To Study the Complex Structural Variants Using PacBio Targeted Sequencing Data.

PacBio sequencing is a powerful approach to study DNA or RNA sequences in a longer scope. It is especially useful in exploring the complex structural variants generated by random integration or multiple rearrangement of endogenous or exogenous sequences. Here, we present a tool, TSD, for complex structural variant discovery using PacBio targeted sequencing data. It allows researchers to identify and visualize the genomic structures of targeted sequences by unlimited splitting, alignment and assembly of long PacBio reads. Application to the sequencing data derived from an HBV integrated human cell line(PLC/PRF/5) indicated that TSD could recover the full profile of HBV…

Read More »

April 1, 2019

Large Enriched Fragment Targeted Sequencing (LEFT-SEQ) Applied to Capture of Wolbachia Genomes.

Symbiosis is a major force of evolutionary change, influencing virtually all aspects of biology, from population ecology and evolution to genomics and molecular/biochemical mechanisms of development and reproduction. A remarkable example is Wolbachia endobacteria, present in some parasitic nematodes and many arthropod species. Acquisition of genomic data from diverse Wolbachia clades will aid in the elucidation of the different symbiotic mechanisms(s). However, challenges of de novo assembly of Wolbachia genomes include the presence in the sample of host DNA: nematode/vertebrate or insect. We designed biotinylated probes to capture large fragments of Wolbachia DNA for sequencing using PacBio technology (LEFT-SEQ: Large…

Read More »

March 1, 2019

Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2.

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ~1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during…

Read More »

February 1, 2019

CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat.

To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1).We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n?=?11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis.CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing…

Read More »

January 1, 2019

Long-read sequence capture of the haemoglobin gene clusters across codfish species.

Combining high-throughput sequencing with targeted sequence capture has become an attractive tool to study specific genomic regions of interest. Most studies have so far focused on the exome using short-read technology. These approaches are not designed to capture intergenic regions needed to reconstruct genomic organization, including regulatory regions and gene synteny. Here, we demonstrate the power of combining targeted sequence capture with long-read sequencing technology for comparative genomic analyses of the haemoglobin (Hb) gene clusters across eight species separated by up to 70 million years. Guided by the reference genome assembly of the Atlantic cod (Gadus morhua) together with genome…

Read More »

December 1, 2018

Mapping the landscape of tandem repeat variability by targeted long read single molecule sequencing in familial X-linked intellectual disability.

The etiology of more than half of all patients with X-linked intellectual disability remains elusive, despite array-based comparative genomic hybridization, whole exome or genome sequencing. Since short read massive parallel sequencing approaches do not allow the detection of larger tandem repeat expansions, we hypothesized that such expansions could be a hidden cause of X-linked intellectual disability.We selectively captured over 1800 tandem repeats on the X chromosome and characterized them by long read single molecule sequencing in 3 families with idiopathic X-linked intellectual disability. In male DNA samples, full tandem repeat length sequences were obtained for 88-93% of the targets and…

Read More »

October 16, 2018

No-amp targeted SMRT sequencing using a CRISPR-Cas9 enrichment method

Targeted sequencing of genomic DNA requires an enrichment method to generate detectable amounts of sequencing products. Genomic regions with extreme composition bias and repetitive sequences can pose a significant enrichment challenge. Many genetic diseases caused by repeat element expansions are representative of these challenging enrichment targets. PCR amplification, used either alone or in combination with a hybridization capture method, is a common approach for target enrichment. While PCR amplification can be used successfully with genomic regions of moderate to high complexity, it is the low-complexity regions and regions containing repetitive elements sometimes of indeterminate lengths due to repeat expansions that…

Read More »

September 6, 2018

Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT Sequencing of repeat-expansion disease causative genomic regions

Targeted sequencing has proven to be economical for obtaining sequence information for defined regions of the genome. However, most target enrichment methods are reliant upon some form of amplification which can negatively impact downstream analysis. For example, amplification removes epigenetic marks present in native DNA, including nucleotide methylation, which are hypothesized to contribute to disease mechanisms in some disorders. In addition, some genomic regions known to be causative of many genetic disorders have extreme GC content and/or repetitive sequences that tend to be recalcitrant to faithful amplification. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system…

Read More »

September 1, 2018

Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing.

Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine-cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification-free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No-Amp Targeted sequencing) in combination with single molecule, real-time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives