Streptococcus pneumoniae (the pneumococcus) is the world’s foremost bacterial pathogen in both morbidity and mortality. Switching between phenotypic forms (or ‘phases’) that favour asymptomatic carriage or invasive disease was first reported in 1933. Here, we show that the underlying mechanism for such phase variation consists of genetic rearrangements in a Type I restriction-modification system (SpnD39III). The rearrangements generate six alternative specificities with distinct methylation patterns, as defined by single-molecule, real-time (SMRT) methylomics. The SpnD39III variants have distinct gene expression profiles. We demonstrate distinct virulence in experimental infection and in vivo selection for switching between SpnD39III variants. SpnD39III is ubiquitous in…
In an isogenic cell population, phenotypic heterogeneity among individual cells is common and critical for survival of the population under different environment conditions. DNA modification is an important epigenetic factor that can regulate phenotypic heterogeneity. The single molecule real-time (SMRT) sequencing technology provides a unique platform for detecting a wide range of DNA modifications, including N6-methyladenine (6-mA), N4-methylcytosine (4-mC) and 5-methylcytosine (5-mC). Here we present qDNAmod, a novel bioinformatic tool for genome-wide quantitative profiling of intercellular heterogeneity of DNA modification from SMRT sequencing data. It is capable of estimating proportion of isogenic haploid cells, in which the same loci of…
The human pathogen Streptococcus pneumoniae (pneumococcus) exhibits a high degree of genomic diversity and plasticity. Isolates with high genomic similarity are grouped into lineages that undergo homologous recombination at variable rates. PMEN1 is a pandemic, multidrug-resistant lineage. Heterologous gene exchange between PMEN1 and non-PMEN1 isolates is directional, with extensive gene transfer from PMEN1 strains and only modest transfer into PMEN1 strains. Restriction-modification (R-M) systems can restrict horizontal gene transfer, yet most pneumococcal strains code for either the DpnI or DpnII R-M system and neither limits homologous recombination. Our comparative genomic analysis revealed that PMEN1 isolates code for DpnIII, a third…
A precise understanding of the genomic organization into transcriptional units and their regulation is essential for our comprehension of opportunistic human pathogens and how they cause disease. Using single-molecule real-time (PacBio) sequencing we unambiguously determined the genome sequence of Streptococcus pneumoniae strain D39 and revealed several inversions previously undetected by short-read sequencing. Significantly, a chromosomal inversion results in antigenic variation of PhtD, an important surface-exposed virulence factor. We generated a new genome annotation using automated tools, followed by manual curation, reflecting the current knowledge in the field. By combining sequence-driven terminator prediction, deep paired-end transcriptome sequencing and enrichment of primary…
A scarlet fever outbreak began in mainland China and Hong Kong in 2011 (refs. 1-6). Macrolide- and tetracycline-resistant Streptococcus pyogenes emm12 isolates represent the majority of clinical cases. Recently, we identified two mobile genetic elements that were closely associated with emm12 outbreak isolates: the integrative and conjugative element ICE-emm12, encoding genes for tetracycline and macrolide resistance, and prophage FHKU.vir, encoding the superantigens SSA and SpeC, as well as the DNase Spd1 (ref. 4). Here we sequenced the genomes of 141 emm12 isolates, including 132 isolated in Hong Kong between 2005 and 2011. We found that the introduction of several ICE-emm12…
Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a…
Two-component gene regulatory systems (TCSs) are a major mechanism by which bacteria respond to environmental stimuli and thus are critical to infectivity. For example, the control of virulence regulator/sensor kinase (CovRS) TCS is central to the virulence of the major human pathogen group A Streptococcus (GAS). Here, we used a combination of quantitative in vivo phosphorylation assays, isoallelic strains that varied by only a single amino acid in CovS, and transcriptome analyses to characterize the impact of CovS on CovR phosphorylation and GAS global gene expression. We discovered that CovS primarily serves to phosphorylate CovR, thereby resulting in the repression…
Streptococcus thermophilus is used by the dairy industry to manufacture yogurt and several cheeses. Using PacBio and Illumina platforms, we sequenced the genome of S. thermophilus SMQ-301, the host of several virulent phages. The genome is composed of 1,861,792 bp and contains 2,037 genes, 67 tRNAs, and 18 rRNAs. Copyright © 2015 Labrie et al.
Pneumococcal carriage is a reservoir for transmission and a precursor to pneumococcal disease. The experimental human pneumococcal carriage model provides a useful tool to aid vaccine licensure through the measurement of vaccine efficacy against carriage (VEcol). Documentation of the genetic stability of the experimental human pneumococcal carriage model is important to further strengthen confidence in its safety and conclusions, enabling it to further facilitate vaccine licensure through providing evidence of VEcol.229 isolates were sequenced from 10 volunteers in whom experimental human pneumococcal carriage was established, sampled over a period of 35 days. Multiple isolates from within a single volunteer at…
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a…
Serotype IV group B Streptococcus (GBS) is emerging in Canada and the United States with rates as high as 5% of the total burden of adult invasive GBS disease. To understand this emergence, we studied the population structure and assessed the antimicrobial susceptibility of serotype IV isolates causing adult invasive infection in Manitoba and Saskatchewan, Canada, between 2010 and 2014. Whole-genome sequencing was used to determine multilocus sequence typing information and identify genes encoding antimicrobial resistance in 85 invasive serotype IV GBS strains. Antimicrobial susceptibility testing was performed by standard methods. Strain divergence was assessed using genome-wide single-nucleotide polymorphism analysis.…
Streptococcus agalactiae (group B Streptococcus) is a common commensal strain in the human gastrointestinal tract that can also cause invasive disease in humans and other animals. We report here the complete genome sequence of S. agalactiae SG-M1, a serotype III, multilocus sequence type 283 strain, isolated from a Singaporean patient suffering from meningitis. Copyright © 2015 Mehershahi et al.
The group A Streptococcus (GAS) M1T1 clone emerged in the 1980s as a leading cause of epidemic invasive infections worldwide, including necrotizing fasciitis and toxic shock syndrome. Horizontal transfer of mobile genetic elements has played a central role in the evolution of the M1T1 clone, with bacteriophage-encoded determinants DNase Sda1 and superantigen SpeA2 contributing to enhanced virulence and colonization respectively. Outbreaks of scarlet fever in Hong Kong and China in 2011, caused primarily by emm12 GAS, led to our investigation of the next most common cause of scarlet fever, emm1 GAS. Genomic analysis of 18 emm1 isolates from Hong Kong…
Three vancomycin-resistant streptococcal strains carrying vanG elements (two invasive Streptococcus agalactiae isolates [GBS-NY and GBS-NM, both serotype II and multilocus sequence type 22] and one Streptococcus anginosus [Sa]) were examined. The 45,585-bp elements found within Sa and GBS-NY were nearly identical (together designated vanG-1) and shared near-identity over an ~15-kb overlap with a previously described vanG element from Enterococcus faecalis. Unexpectedly, vanG-1 shared much less homology with the 49,321-bp vanG-2 element from GBS-NM, with widely different levels (50% to 99%) of sequence identity shared among 44 related open reading frames. Immediately adjacent to both vanG-1 and vanG-2 were 44,670-bp and…
Bacterial populations often consist of multiple co-circulating lineages. Determining how such population structures arise requires understanding what drives bacterial diversification. Using 616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are typically characterized by combinations of infrequently transferred stable genomic islands: those moving primarily through transformation, along with integrative and conjugative elements and phage-related chromosomal islands. The only lineage containing extensive unique sequence corresponds to a set of atypical unencapsulated isolates that may represent a distinct species. However, prophage content is highly variable even within lineages, suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-phage mechanisms to prevent…