September 22, 2019  |  

Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry.

Alternative splicing (AS) is a key post-transcriptional regulatory mechanism, yet little information is known about its roles in fruit crops. Here, AS was globally analyzed in the wild strawberry Fragaria vesca genome with RNA-seq data derived from different stages of fruit development. The AS landscape was characterized and compared between the single-molecule, real-time (SMRT) and Illumina RNA-seq platform. While SMRT has a lower sequencing depth, it identifies more genes undergoing AS (57.67% of detected multiexon genes) when it is compared with Illumina (33.48%), illustrating the efficacy of SMRT in AS identification. We investigated different modes of AS in the context of fruit development; the percentage of intron retention (IR) is markedly reduced whereas that of alternative acceptor sites (AA) is significantly increased post-fertilization when compared with pre-fertilization. When all the identified transcripts were combined, a total of 66.43% detected multiexon genes in strawberry undergo AS, some of which lead to a gain or loss of conserved domains in the gene products. The work demonstrates that SMRT sequencing is highly powerful in AS discovery and provides a rich data resource for later functional studies of different isoforms. Further, shifting AS modes may contribute to rapid changes of gene expression during fruit set.© 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.


September 22, 2019  |  

Genome re-annotation of the wild strawberry Fragaria vesca using extensive Illumina-and SMRT-based RNA-seq datasets

The genome of the wild diploid strawberry species Fragaria vesca, an ideal model system of cultivated strawberry (Fragaria × ananassa, octoploid) and other Rosaceae family crops, was first published in 2011 and followed by a new assembly (Fvb). However, the annotation for Fvb mainly relied on ab initio predictions and included only predicted coding sequences, therefore an improved annotation is highly desirable. Here, a new annotation version named v2.0.a2 was created for the Fvb genome by a pipeline utilizing one PacBio library, 90 Illumina RNA-seq libraries, and 9 small RNA-seq libraries. Altogether, 18,641 genes (55.6% out of 33,538 genes) were augmented with information on the 5′ and/or 3′ UTRs, 13,168 (39.3%) protein-coding genes were modified or newly identified, and 7,370 genes were found to possess alternative isoforms. In addition, 1,938 long non-coding RNAs, 171 miRNAs, and 51,714 small RNA clusters were integrated into the annotation. This new annotation of F. vesca is substantially improved in both accuracy and integrity of gene predictions, beneficial to the gene functional studies in strawberry and to the comparative genomic analysis of other horticultural crops in Rosaceae family.


September 22, 2019  |  

Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry.

Verticillium dahliae infection of strawberry (Fragaria x ananassa) is a major cause of disease-induced wilting in soil-grown strawberries across the world. To understand what components of the pathogen are affecting disease expression, the presence of the known effector VdAve1 was screened in a sample of Verticillium dahliae isolates. Isolates from strawberry were found to contain VdAve1 and were divided into two major clades, based upon their vegetative compatibility groups (VCG); no UK strawberry isolates contained VdAve1. VC clade was strongly related to their virulence levels. VdAve1-containing isolates pathogenic on strawberry were found in both clades, in contrast to some recently published findings. On strawberry, VdAve1-containing isolates had significantly higher virulence during early infection, which diminished in significance as the infection progressed. Transformation of a virulent non-VdAve1 containing isolate, with VdAve1 was found neither to increase nor decrease virulence when inoculated on a susceptible strawberry cultivar. There are therefore virulence factors that are epistatic to VdAve1 and potentially multiple independent routes to high virulence on strawberry in V. dahliae lineages. Genome sequencing a subset of isolates across the two VCGs revealed that isolates were differentiated at the whole genome level and contained multiple changes in putative effector content, indicating that different clonal VCGs may have evolved different strategies for infecting strawberry, leading to different virulence levels in pathogenicity tests. It is therefore important to consider both clonal lineage and effector complement as the adaptive potential of each lineage will differ, even if they contain the same race determining effector.


September 22, 2019  |  

Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits.

NAC proteins are a family of transcription factors which have a variety of important regulatory roles in plants. They present a very well conserved group of NAC subdomains in the N-terminal region and a highly variable domain at the C-terminus. Currently, knowledge concerning NAC family in the strawberry plant remains very limited. In this work, we analyzed the NAC family of Fragaria vesca, and a total of 112 NAC proteins were identified after we curated the annotations from the version 4.0.a1 genome. They were placed into the ligation groups (pseudo-chromosomes) and described its physicochemical and genetic features. A microarray transcriptomic analysis showed six of them expressed during the development and ripening of the Fragaria x ananassa fruit. Their expression patterns were studied in fruit (receptacle and achenes) in different stages of development and in vegetative tissues. Also, the expression level under different hormonal treatments (auxins, ABA) and drought stress was investigated. In addition, they were clustered with other NAC transcription factor with known function related to growth and development, senescence, fruit ripening, stress response, and secondary cell wall and vascular development. Our results indicate that these six strawberry NAC proteins could play different important regulatory roles in the process of development and ripening of the fruit, providing the basis for further functional studies and the selection for NAC candidates suitable for biotechnological applications.


July 19, 2019  |  

Long read sequencing technology to solve complex genomic regions assembly in plants

Background: Numerous completed or on-going whole genome sequencing projects have highlighted the fact that obtaining a high quality genome sequence is necessary to address comparative genomics questions such as structural variations among genotypes and gain or loss of specific function. Despite the spectacular progress that has been made in sequencing technologies, obtaining accurate and reliable data is still a challenge, both at the whole genome scale and when targeting specific genomic regions. These problems are even more noticeable for complex plant genomes. Most plant genomes are known to be particularly challenging due to their size, high density of repetitive elements and various levels of ploidy. To overcome these problems, we have developed a strategy to reduce genome complexity by using the large insert BAC libraries combined with next generation sequencing technologies. Results: We compared two different technologies (Roche-454 and Pacific Biosciences PacBio RS II) to sequence pools of BAC clones in order to obtain the best quality sequence. We targeted nine BAC clones from different species (maize, wheat, strawberry, barley, sugarcane and sunflower) known to be complex in terms of sequence assembly. We sequenced the pools of the nine BAC clones with both technologies. We compared assembly results and highlighted differences due to the sequencing technologies used. Conclusions: We demonstrated that the long reads obtained with the PacBio RS II technology serve to obtain a better and more reliable assembly, notably by preventing errors due to duplicated or repetitive sequences in the same region.


July 19, 2019  |  

Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity.

Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology.Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ~7.9 million base pairs (Mb), representing a ~300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ~24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome.Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.© The Authors 2017. Published by Oxford University Press.


July 7, 2019  |  

Complete genome sequences of three isolates of Xanthomonas fragariae, the bacterium responsible for angular leaf spots on strawberry plants.

Xanthomonas fragariae is a worldwide-spread plant bacterial disease causing angular leaf spots, thus reducing the yield of production for strawberry fruits. Three isolates with various geographic and time origins were sequenced with long-read technology (PacBio) to generate finished genome sequences of virulent strains and observe the variability in their contents. Copyright © 2017 Gétaz et al.


July 7, 2019  |  

Complete genome sequence of Pseudomonas brassicacearum LBUM300, a disease-suppressive bacterium with antagonistic activity toward fungal, oomycete, and bacterial plant pathogens.

Pseudomonas brassicacearum LBUM300, a plant rhizosphere-inhabiting bacterium, produces 2,4-diacetylphloroglucinol and hydrogen cyanide and has shown antagonistic activity against the plant pathogens Verticillium dahliae, Phytophthora cactorum, and Clavibacter michiganensis subsp. michiganensis. Here, we report the complete genome sequence of P. brassicacearum LBUM300. Copyright © 2016 Novinscak et al.


July 7, 2019  |  

Finished genome sequences of Xanthomonas fragariae, the cause of bacterial angular leaf spot of strawberry.

Xanthomonas fragariae is a foliar pathogen of strawberry that is of significant concern to nursery production of strawberry transplants and field production of strawberry fruit. Long-read sequencing was employed to generate finished genomes for two isolates (each with one chromosome and two plasmids) from symptomatic plants in northern California. Copyright © 2016 Henry and Leveau.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.