X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
February 9, 2017

DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus.

Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA restriction–modification (RM) system given the generic name of Sau1, which maintains different patterns of methylation on specific target sequences on the genomes of different lineages. We have determined the target sequences recognized by the Sau1 Type I RM systems present in a wide range of the most prevalent S. aureus lineages and assigned the sequences recognized to particular target recognition domains within the RM enzymes. We used a range…

Read More »

November 14, 2016

Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.

Currently, bacterial 16S rRNA gene analyses are based on sequencing of individual variable regions of the 16S rRNA gene (Kozich, et al Appl Environ Microbiol 79:5112-5120, 2013).This short read approach can introduce biases. Thus, full-length bacterial 16S rRNA gene sequencing is needed to reduced biases. A new alternative for full-length bacterial 16S rRNA gene sequencing is offered by PacBio single molecule, real-time (SMRT) technology. The aim of our study was to validate PacBio P6 sequencing chemistry using three approaches: 1) sequencing the full-length bacterial 16S rRNA gene from a single bacterial species Staphylococcus aureus to analyze error modes and to optimize…

Read More »

October 11, 2016

Complete circular genome sequence of successful ST8/SCCmecIV community-associated methicillin-resistant Staphylococcus aureus (OC8) in Russia: one-megabase genomic inversion, IS256’s spread, and evolution of Russia ST8-IV.

ST8/SCCmecIV community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has been a common threat, with large USA300 epidemics in the United States. The global geographical structure of ST8/SCCmecIV has not yet been fully elucidated. We herein determined the complete circular genome sequence of ST8/SCCmecIVc strain OC8 from Siberian Russia. We found that 36.0% of the genome was inverted relative to USA300. Two IS256, oppositely oriented, at IS256-enriched hot spots were implicated with the one-megabase genomic inversion (MbIN) and vSaß split. The behavior of IS256 was flexible: its insertion site (att) sequences on the genome and junction sequences of extrachromosomal circular DNA were all…

Read More »

July 28, 2016

Complete genome sequences of two methicillin-sensitive Staphylococcus aureus isolates representing a population subset highly prevalent in human colonization.

Here, we report the high-quality draft genome sequences of two methicillin-susceptible Staphylococcus aureus isolates, 08-02119 and 08-02300. Belonging to sequence type 582 (ST582) and ST7, both isolates are representatives of clonal lineages often associated with asymptomatic colonization of humans. Copyright © 2016 Weber et al.

Read More »

July 25, 2016

Complete genome sequence of Enterococcus faecalis LD33, a bacteriocin-producing strain.

Enterococcus faecalis LD33 strain was originally isolated from traditional naturally fermented cream in Inner Mongolia of China. Its complete genome sequence was carried out using the Illumina Hiseq and the PacBio RSII platform. The genome only has a circular chromosome and a GC content of 37.58%. Other core information shown in the genome sequencing results further insight on this bacterium's genetic elements for bacteriocin production and the genes related to respiratory chain. Copyright © 2016 Elsevier B.V. All rights reserved.

Read More »

May 1, 2016

First report of cfr-encoding plasmids in the pandemic sequence type (ST) 22 methicillin-resistant Staphylococcus aureus Staphylococcal cassette chromosome mec type-IV clone.

Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins, cfr encoding phenicol, lincosamide, oxazolidinone, pleuromutilin and streptogramin A (PhLOPSA) resistance, its homolgue cfr(B) or optrA conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field…

Read More »

April 28, 2016

PEPR: pipelines for evaluating prokaryotic references.

The rapid adoption of microbial whole genome sequencing in public health, clinical testing, and forensic laboratories requires the use of validated measurement processes. Well-characterized, homogeneous, and stable microbial genomic reference materials can be used to evaluate measurement processes, improving confidence in microbial whole genome sequencing results. We have developed a reproducible and transparent bioinformatics tool, PEPR, Pipelines for Evaluating Prokaryotic References, for characterizing the reference genome of prokaryotic genomic materials. PEPR evaluates the quality, purity, and homogeneity of the reference material genome, and purity of the genomic material. The quality of the genome is evaluated using high coverage paired-end sequence…

Read More »

April 8, 2016

Rapid emergence and evolution of Staphylococcus aureus clones harbouring fusC-containing Staphylococcal cassette chromosome elements.

The prevalence of fusidic acid (FA) resistance amongst Staphylococcus aureus in New Zealand (NZ) is amongst the highest reported globally, with a recent study describing a resistance rate of approximately 28%. Three FA-resistant S. aureus clones (ST5 MRSA, ST1 MSSA and ST1 MRSA) have emerged over the past decade and now predominate in NZ, and in all three clones FA resistance is mediated by the fusC gene. In particular, ST5 MRSA has rapidly become the dominant MRSA clone in NZ, although the origin of FA-resistant ST5 MRSA has not been explored, and the genetic context of fusC in FA-resistant NZ…

Read More »

December 15, 2015

Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America.

The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) epidemic in the United States is attributed to the spread of the USA300 clone. An epidemic of CA-MRSA closely related to USA300 has occurred in northern South America (USA300 Latin-American variant, USA300-LV). Using phylogenomic analysis, we aimed to understand the relationships between these 2 epidemics.We sequenced the genomes of 51 MRSA clinical isolates collected between 1999 and 2012 from the United States, Colombia, Venezuela, and Ecuador. Phylogenetic analysis was used to infer the relationships and times since the divergence of the major clades.Phylogenetic analyses revealed 2 dominant clades that segregated by geographical region, had…

Read More »

December 1, 2015

A full genomic characterization of the development of a stable Small Colony Variant cell-type by a clinical Staphylococcus aureus strain.

A key to persistent and recurrent Staphylococcus aureus infections is its ability to adapt to diverse and toxic conditions. This ability includes a switch into a biofilm or to the quasi-dormant Small Colony Variant (SCV). The development and molecular attributes of SCVs have been difficult to study due to their rapid reversion to their parental cell-type. We recently described the unique induction of a matrix-embedded and stable SCV cell-type in a clinical S. aureus strain (WCH-SK2) by growing the cells with limiting conditions for a prolonged timeframe. Here we further study their characteristics. They possessed an increased viability in the…

Read More »

November 1, 2015

Recurrent methicillin-resistant Staphylococcus aureus cutaneous abscesses and selection of reduced chlorhexidine susceptibility during chlorhexidine use.

We describe the selection of reduced chlorhexidine susceptibility during chlorhexidine use in a patient with two episodes of cutaneous USA300 methicillin-resistant Staphylococcus aureus abscess. The second clinical isolate harbors a novel plasmid that encodes the QacA efflux pump. Greater use of chlorhexidine for disease prevention warrants surveillance for resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

Read More »

October 1, 2015

Methicillin-susceptible, vancomycin-resistant Staphylococcus aureus, Brazil.

We report characterization of a methicillin-susceptible, vancomycin-resistant bloodstream isolate of Staphylococcus aureus recovered from a patient in Brazil. Emergence of vancomycin resistance in methicillin-susceptible S. aureus would indicate that this resistance trait might be poised to disseminate more rapidly among S. aureus and represents a major public health threat.

Read More »

July 2, 2015

Complete and assembled genome sequence of Staphylococcus aureus RKI4, a food-poisoning strain exhibiting a novel S. aureus pathogenicity island carrying seb.

The genome of Staphylococcus aureus RKI4, a strain isolated from feces of a patient in a case of staphylococcal food poisoning, was sequenced using combined Illumina and single-molecule real-time sequencing. Hierarchical assembly of the genome resulted in a 2,725,654-bp chromosome and a 17,905-bp mobile genetic element. Copyright © 2015 Stevens et al.

Read More »

1 2 3 4

Subscribe for blog updates:

Archives