Menu
July 7, 2019  |  

Complete genome sequence of Staphylococcus aureus Z172, a vancomycin-intermediate and daptomycin-nonsusceptible methicillin-resistant strain isolated in Taiwan.

We report the complete genome sequence of Z172, a representative strain of sequence type 239-staphylococcal cassette chromosome mec type III (ST239-SCCmec type III) hospital-associated methicillin-resistant Staphylococcus aureus in Taiwan. Strain Z172 also exhibits a vancomycin-intermediate and daptomycin-nonsusceptible phenotype.


July 7, 2019  |  

Complete genome and plasmid sequences of Staphylococcus aureus EDCC 5055 (DSM 28763), used to study implant-associated infections.

Staphylococcus aureus EDCC 5055 (DSM 28763) is a human clinical wound isolate intensively used to study implant-associated infections in rabbit and rat infection models. Here, we report its complete genome sequence (2,794,437 bp) along with that of one plasmid (27,437 bp). This strain belongs to sequence type 8 and contains a mecA gene. Copyright © 2017 Mannala et al.


July 7, 2019  |  

Genomic analysis of ST88 community-acquired methicillin resistant Staphylococcus aureus in Ghana.

The emergence and evolution of community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strains in Africa is poorly understood. However, one particular MRSA lineage called ST88, appears to be rapidly establishing itself as an “African” CA-MRSA clone. In this study, we employed whole genome sequencing to provide more information on the genetic background of ST88 CA-MRSA isolates from Ghana and to describe in detail ST88 CA-MRSA isolates in comparison with other MRSA lineages worldwide.We first established a complete ST88 reference genome (AUS0325) using PacBio SMRT sequencing. We then used comparative genomics to assess relatedness among 17 ST88 CA-MRSA isolates recovered from patients attending Buruli ulcer treatment centres in Ghana, three non-African ST88s and 15 other MRSA lineages.We show that Ghanaian ST88 forms a discrete MRSA lineage (harbouring SCCmec-IV [2B]). Gene content analysis identified five distinct genomic regions enriched among ST88 isolates compared with the other S. aureus lineages. The Ghanaian ST88 isolates had only 658 core genome SNPs and there was no correlation between phylogeny and geography, suggesting the recent spread of this clone. The lineage was also resistant to multiple classes of antibiotics including ß-lactams, tetracycline and chloramphenicol.This study reveals that S. aureus ST88-IV is a recently emerging and rapidly spreading CA-MRSA clone in Ghana. The study highlights the capacity of small snapshot genomic studies to provide actionable public health information in resource limited settings. To our knowledge this is the first genomic assessment of the ST88 CA-MRSA clone.


July 7, 2019  |  

The recent emergence in hospitals of multidrug-resistant community-associated sequence type 1 and spa type t127 methicillin-resistant Staphylococcus aureus investigated by whole-genome sequencing: Implications for screening.

Community-associated spa type t127/t922 methicillin-resistant Staphylococcus aureus (MRSA) prevalence increased from 1%-7% in Ireland between 2010-2015. This study tracked the spread of 89 such isolates from June 2013-June 2016. These included 78 healthcare-associated and 11 community associated-MRSA isolates from a prolonged hospital outbreak (H1) (n = 46), 16 other hospitals (n = 28), four other healthcare facilities (n = 4) and community-associated sources (n = 11). Isolates underwent antimicrobial susceptibility testing, DNA microarray profiling and whole-genome sequencing. Minimum spanning trees were generated following core-genome multilocus sequence typing and pairwise single nucleotide variation (SNV) analysis was performed. All isolates were sequence type 1 MRSA staphylococcal cassette chromosome mec type IV (ST1-MRSA-IV) and 76/89 were multidrug-resistant. Fifty isolates, including 40/46 from H1, were high-level mupirocin-resistant, carrying a conjugative 39 kb iles2-encoding plasmid. Two closely related ST1-MRSA-IV strains (I and II) and multiple sporadic strains were identified. Strain I isolates (57/89), including 43/46 H1 and all high-level mupirocin-resistant isolates, exhibited =80 SNVs. Two strain I isolates from separate H1 healthcare workers differed from other H1/strain I isolates by 7-47 and 12-53 SNVs, respectively, indicating healthcare worker involvement in this outbreak. Strain II isolates (19/89), including the remaining H1 isolates, exhibited =127 SNVs. For each strain, the pairwise SNVs exhibited by healthcare-associated and community-associated isolates indicated recent transmission of ST1-MRSA-IV within and between multiple hospitals, healthcare facilities and communities in Ireland. Given the interchange between healthcare-associated and community-associated isolates in hospitals, the risk factors that inform screening for MRSA require revision.


July 7, 2019  |  

Acquisition of virulence factors in livestock-associated MRSA: Lysogenic conversion of CC398 strains by virulence gene-containing phages.

Staphylococcus aureus MRSA strains belonging to the clonal complex 398 (CC398) are highly prevalent in livestock and companion animals but may also cause serious infections in humans. CC398 strains in livestock usually do not possess well-known virulence factors that can be frequently found in other MRSA sequence types (ST). Since many staphylococcal virulence genes are residing on the genomes of temperate phages, the question arises why livestock-associated (LA-) CC398 strains are only rarely infected by those phages. We isolated and characterized four temperate phages (P240, P282, P630 and P1105) containing genes of the immune evasion cluster (IEC) and/or for the Panton-Valentine leucocidin (PVL). Sequence analysis of the phage genomes showed that they are closely related to known phages and that the DNA region encoding lysis proteins, virulence factors and the integrase exhibits numerous DNA repeats which may facilitate genomic rearrangements. All phages lysed and lysogenized LA-CC398 strains. Integration of IEC phage P282 was detected at ten sites of the hosts’ chromosome. The prophages were stably inherited in LA-CC398 and enterotoxin A, staphylokinase and PVL toxin were produced. The data demonstrate that lysogenic conversion of LA-CC398 strains by virulence-associated phages may occur and that new pathotypes may emerge by this mechanism.


July 7, 2019  |  

Complete genome sequence of a community-associated methicillin-resistant Staphylococcusaureus hypervirulent strain, USA300-C2406, isolated from a patient with a lethal case of necrotizing pneumonia.

USA300 is a predominant community-associated methicillin-resistant Staphylococcus aureus strain causing significant morbidity and mortality. We present here the full annotated genome of a USA300 hypervirulent clinical strain, USA300-C2406, isolated from a patient with a lethal case of necrotizing pneumonia, to gain a better understanding of USA300 hypervirulence. Copyright © 2017 McClure and Zhang.


July 7, 2019  |  

Complete genome sequences of five representative Staphylococcus aureus ST398 strains from five major sequence heterogeneity groups of a diverse isolate collection.

Staphylococcus aureus sequence type 398 (ST398) is a rapidly emerging livestock-associated strain causing zoonotic disease in humans. The course of pathogen evolution remains unclear, prompting whole-genome comparative studies in attempts to elucidate this issue. We present the full, annotated genomes of five newly isolated representative ST398 strains from five major sequence heterogeneity groups of our diverse isolate collection. Copyright © 2017 McClure and Zhang.


July 7, 2019  |  

Zinc resistance within swine associated methicillin resistant staphylococcus aureus (MRSA) Isolates in the USA is associated with MLST lineage.

Zinc resistance in livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) sequence type (ST) 398 is primarily mediated by the czrC gene co-located with the mecA gene, encoding methicillin resistance, within the type V SCCmec element. Because czrC and mecA are located within the same mobile genetic element, it has been suggested that the use of in feed zinc as an antidiarrheal agent has the potential to contribute to the emergence and spread of MRSA in swine through increased selection pressure to maintain the SCCmec element in isolates obtained from pigs. In this study we report the prevalence of the czrC gene and phenotypic zinc resistance in US swine associated LA-MRSA ST5 isolates, MRSA ST5 isolates from humans with no swine contact, and US swine associated LA-MRSA ST398 isolates. We demonstrate that the prevalence of zinc resistance in US swine associated LA-MRSA ST5 isolates was significantly lower than the prevalence of zinc resistance in MRSA ST5 isolates from humans with no swine contact, swine associated LA-MRSA ST398 isolates, and previous reports describing zinc resistance in other LA-MRSA ST398 isolates. Collectively our data suggest that selection pressure associated with zinc supplementation in feed is unlikely to have played a significant role in the emergence of LA-MRSA ST5 in the US swine population. Additionally, our data indicate that zinc resistance is associated with MLST lineage suggesting a potential link between genetic lineage and carriage of resistance determinants.Importance Our data suggest that coselection thought to be associated with the use of zinc in feed as an antimicrobial agent is not playing a role in the emergence of livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) ST5 in the US swine population. Additionally, our data indicate that zinc resistance is more associated with multi locus sequence type (MLST) lineage suggesting a potential link between genetic lineage and carriage of resistance markers. This information is important to public health professionals, veterinarians, producers, and consumers. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Complete genome sequence of the methicillin-resistant Staphylococcus aureus colonizing strain M92.

M92 is a methicillin-resistant Staphylococcus aureus (MRSA) colonizing strain belonging to ST239-MRSA-III. It frequently shows local nasal colonization in our hospital staff, but has never been associated with infection. We sequenced the complete genome of M92, in order to compare it to highly virulent MRSA strains to gain insight into MRSA virulence factors. Copyright © 2017 McClure and Zhang.


July 7, 2019  |  

Next-generation sequence analysis reveals transfer of methicillin resistance to a methicillin-susceptible Staphylococcus aureus strain that subsequently caused a methicillin-resistant Staphylococcus aureus outbreak: a descriptive study.

Resistance to methicillin in Staphylococcus aureus is caused primarily by the mecA gene, which is carried on a mobile genetic element, the staphylococcal cassette chromosome mec (SCCmec). Horizontal transfer of this element is supposed to be an important factor in the emergence of new clones of methicillin-resistant Staphylococcus aureus (MRSA) but has been rarely observed in real time. In 2012, an outbreak occurred involving a health care worker (HCW) and three patients, all carrying a fusidic acid-resistant MRSA strain. The husband of the HCW was screened for MRSA carriage, but only a methicillin-susceptible S. aureus (MSSA) strain, which was also resistant to fusidic acid, was detected. Multiple-locus variable-number tandem-repeat analysis (MLVA) typing showed that both the MSSA and MRSA isolates were MT4053-MC0005. This finding led to the hypothesis that the MSSA strain acquired the SCCmec and subsequently caused an outbreak. To support this hypothesis, next-generation sequencing of the MSSA and MRSA isolates was performed. This study showed that the MSSA isolate clustered closely with the outbreak isolates based on whole-genome multilocus sequence typing and single-nucleotide polymorphism (SNP) analysis, with a genetic distance of 17 genes and 44 SNPs, respectively. Remarkably, there were relatively large differences in the mobile genetic elements in strains within and between individuals. The limited genetic distance between the MSSA and MRSA isolates in combination with a clear epidemiologic link supports the hypothesis that the MSSA isolate acquired a SCCmec and that the resulting MRSA strain caused an outbreak. Copyright © 2017 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.