Menu
July 19, 2019  |  

Examining sources of error in PCR by single-molecule sequencing.

Next-generation sequencing technology has enabled the detection of rare genetic or somatic mutations and contributed to our understanding of disease progression and evolution. However, many next-generation sequencing technologies first rely on DNA amplification, via the Polymerase Chain Reaction (PCR), as part of sample preparation workflows. Mistakes made during PCR appear in sequencing data and contribute to false mutations that can ultimately confound genetic analysis. In this report, a single-molecule sequencing assay was used to comprehensively catalog the different types of errors introduced during PCR, including polymerase misincorporation, structure-induced template-switching, PCR-mediated recombination and DNA damage. In addition to well-characterized polymerase base substitution errors, other sources of error were found to be equally prevalent. PCR-mediated recombination by Taq polymerase was observed at the single-molecule level, and surprisingly found to occur as frequently as polymerase base substitution errors, suggesting it may be an underappreciated source of error for multiplex amplification reactions. Inverted repeat structural elements in lacZ caused polymerase template-switching between the top and bottom strands during replication and the frequency of these events were measured for different polymerases. For very accurate polymerases, DNA damage introduced during temperature cycling, and not polymerase base substitution errors, appeared to be the major contributor toward mutations occurring in amplification products. In total, we analyzed PCR products at the single-molecule level and present here a more complete picture of the types of mistakes that occur during DNA amplification.


July 7, 2019  |  

Mutation assay using single-molecule real-time (SMRT) sequencing technology

Introduction We present here a simple, phenotype-independent mutation assay using a PacBio RSII DNA sequencer employing single-molecule real-time (SMRT) sequencing technology. Salmonella typhimurium YG7108 was treated with the alkylating agent N-ethyl-N-nitrosourea (ENU) and grown though several generations to fix the induced mutations, the DNA was extracted and the mutations were analyzed by using the SMRT DNA sequencer. Results The ENU-induced base-substitution frequency was 15.4 per Megabase pair, which is highly consistent with our previous results based on colony isolation and next-generation sequencing. The induced mutation spectrum (95% G:C???A:T, 5% A:T???G:C) is also consistent with the known ENU signature. The base-substitution frequency of the control was calculated to be less than 0.12 per Megabase pair. A current limitation of the approach is the high frequency of artifactual insertion and deletion mutations it detects. Conclusions Ultra-low frequency base-substitution mutations can be detected directly by using the SMRT DNA sequencer, and this technology provides a phenotype-independent mutation assay.


July 7, 2019  |  

Jitterbug: somatic and germline transposon insertion detection at single-nucleotide resolution.

Transposable elements are major players in genome evolution. Transposon insertion polymorphisms can translate into phenotypic differences in plants and animals and are linked to different diseases including human cancer, making their characterization highly relevant to the study of genome evolution and genetic diseases. Here we present Jitterbug, a novel tool that identifies transposable element insertion sites at single-nucleotide resolution based on the pairedend mapping and clipped-read signatures produced by NGS alignments. Jitterbug can be easily integrated into existing NGS analysis pipelines, using the standard BAM format produced by frequently applied alignment tools (e.g. bwa, bowtie2), with no need to realign reads to a set of consensus transposon sequences. Jitterbug is highly sensitive and able to recall transposon insertions with a very high specificity, as demonstrated by benchmarks in the human and Arabidopsis genomes, and validation using long PacBio reads. In addition, Jitterbug estimates the zygosity of transposon insertions with high accuracy and can also identify somatic insertions. We demonstrate that Jitterbug can identify mosaic somatic transposon movement using sequenced tumor-normal sample pairs and allows for estimating the cancer cell fraction of clones containing a somatic TE insertion. We suggest that the independent methods we use to evaluate performance are a step towards creating a gold standard dataset for benchmarking structural variant prediction tools.


July 7, 2019  |  

Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis.

Cerebral cavernous malformations (CCMs) are vascular lesions affecting the central nervous system. CCM occurs either sporadically or in an inherited, autosomal dominant manner. Constitutional (germline) mutations in any of three genes, KRIT1, CCM2 and PDCD10, can cause the inherited form. Analysis of CCM lesions from inherited cases revealed biallelic somatic mutations, indicating that CCM follows a Knudsonian two-hit mutation mechanism. It is still unknown, however, if the sporadic cases of CCM also follow this genetic mechanism. We extracted DNA from 11 surgically excised lesions from sporadic CCM patients, and sequenced the three CCM genes in each specimen using a next-generation sequencing approach. Four sporadic CCM lesion samples (36%) were found to contain novel somatic mutations. Three of the lesions contained a single somatic mutation, and one lesion contained two biallelic somatic mutations. Herein, we also describe evidence of somatic mosaicism in a patient presenting with over 130 CCM lesions localized to one hemisphere of the brain. Finally, in a lesion regrowth sample, we found that the regrown CCM lesion contained the same somatic mutation as the original lesion. Together, these data bolster the idea that all forms of CCM have a genetic underpinning of the two-hit mutation mechanism in the known CCM genes. Recent studies have found aberrant Rho kinase activation in inherited CCM pathogenesis, and we present evidence that this pathway is activated in sporadic CCM patients. These results suggest that all CCM patients, including those with the more common sporadic form, are potentially amenable to the same therapy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial.

The successes of targeted drugs with companion predictive biomarkers and the technological advances in gene sequencing have generated enthusiasm for evaluating personalized cancer medicine strategies using genomic profiling. We assessed the feasibility of incorporating real-time analysis of somatic mutations within exons of 19 genes into patient management. Blood, tumor biopsy and archived tumor samples were collected from 50 patients recruited from four cancer centers. Samples were analyzed using three technologies: targeted exon sequencing using Pacific Biosciences PacBio RS, multiplex somatic mutation genotyping using Sequenom MassARRAY and Sanger sequencing. An expert panel reviewed results prior to reporting to clinicians. A clinical laboratory verified actionable mutations. Fifty patients were recruited. Nineteen actionable mutations were identified in 16 (32%) patients. Across technologies, results were in agreement in 100% of biopsy specimens and 95% of archival specimens. Profiling results from paired archival/biopsy specimens were concordant in 30/34 (88%) patients. We demonstrated that the use of next generation sequencing for real-time genomic profiling in advanced cancer patients is feasible. Additionally, actionable mutations identified in this study were relatively stable between archival and biopsy samples, implying that cancer mutations that are good predictors of drug response may remain constant across clinical stages. Copyright © 2012 UICC.


July 7, 2019  |  

Cancer genomics: technology, discovery, and translation.

In recent years, the increasing awareness that somatic mutations and other genetic aberrations drive human malignancies has led us within reach of personalized cancer medicine (PCM). The implementation of PCM is based on the following premises: genetic aberrations exist in human malignancies; a subset of these aberrations drive oncogenesis and tumor biology; these aberrations are actionable (defined as having the potential to affect management recommendations based on diagnostic, prognostic, and/or predictive implications); and there are highly specific anticancer agents available that effectively modulate these targets. This article highlights the technology underlying cancer genomics and examines the early results of genome sequencing and the challenges met in the discovery of new genetic aberrations. Finally, drawing from experiences gained in a feasibility study of somatic mutation genotyping and targeted exome sequencing led by Princess Margaret Hospital-University Health Network and the Ontario Institute for Cancer Research, the processes, challenges, and issues involved in the translation of cancer genomics to the clinic are discussed.


July 7, 2019  |  

Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations.

Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, ß-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic ß-catenin signalling in medulloblastoma.


July 7, 2019  |  

Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis.

Genomic studies have revealed significant branching heterogeneity in cancer. Studies of resistance to tyrosine kinase inhibitor therapy have not fully reflected this heterogeneity because resistance in individual patients has been ascribed to largely mutually exclusive on-target or off-target mechanisms in which tumors either retain dependency on the target oncogene or subvert it through a parallel pathway. Using targeted sequencing from single cells and colonies from patient samples, we demonstrate tremendous clonal diversity in the majority of acute myeloid leukemia (AML) patients with activating FLT3 internal tandem duplication mutations at the time of acquired resistance to the FLT3 inhibitor quizartinib. These findings establish that clinical resistance to quizartinib is highly complex and reflects the underlying clonal heterogeneity of AML.© 2017 by The American Society of Hematology.


July 7, 2019  |  

Identification of low allele frequency mosaic mutations in Alzheimer disease

Germline mutations ofAPP,PSEN1, andPSEN2 genes cause autosomal dominant Alzheimer disease (AD). Somatic variants of the same genes may underlie pathogenesis in sporadic AD, which is the most prevalent form of the disease. Importantly, such somatic variants may be present at very low allelic frequency, confined to the brain, and are thus very difficult or impossible to detect in blood-derived DNA. Ever-refined methodologies to identify mutations present in a fraction of the DNA of the original tissue are rapidly transforming our understanding of DNA mutation and their role in complex pathologies such as tumors. These methods stand poised to test to what extend somatic variants may play a role in AD and other neurodegenerative diseases.


July 7, 2019  |  

Avoidance of APOBEC3B-induced mutation by error-free lesion bypass.

APOBEC cytidine deaminases mutate cancer genomes by converting cytidines into uridines within ssDNA during replication. Although uracil DNA glycosylases limit APOBEC-induced mutation, it is unknown if subsequent base excision repair (BER) steps function on replication-associated ssDNA. Hence, we measured APOBEC3B-induced CAN1 mutation frequencies in yeast deficient in BER endonucleases or DNA damage tolerance proteins. Strains lacking Apn1, Apn2, Ntg1, Ntg2 or Rev3 displayed wild-type frequencies of APOBEC3B-induced canavanine resistance (CanR). However, strains without error-free lesion bypass proteins Ubc13, Mms2 and Mph1 displayed respective 4.9-, 2.8- and 7.8-fold higher frequency of APOBEC3B-induced CanR. These results indicate that mutations resulting from APOBEC activity are avoided by deoxyuridine conversion to abasic sites ahead of nascent lagging strand DNA synthesis and subsequent bypass by error-free template switching. We found this mechanism also functions during telomere re-synthesis, but with a diminished requirement for Ubc13. Interestingly, reduction of G to C substitutions in Ubc13-deficient strains uncovered a previously unknown role of Ubc13 in controlling the activity of the translesion synthesis polymerase, Rev1. Our results highlight a novel mechanism for error-free bypass of deoxyuridines generated within ssDNA and suggest that the APOBEC mutation signature observed in cancer genomes may under-represent the genomic damage these enzymes induce.© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019  |  

Rapid genetic and developmental morphological change following extreme celerity

Proximate environmental effects on metamorphosis have been explored in many vertebrate systems, but less attention has been devoted to how the environment affects developmental morphological change in mammals. Understanding proximate environmental effects on mammalian morphological change, particularly changes involving skin replacement, may aid in the design of therapeutic strategies to address severe burn or other debilitating injuries. Here, we specifically explore effects of celerity broadly, and we present results showing rapid change in mammalian morphological development following encountering maximum celerity. Morphological changes were pronounced within 96 hours and included at least partial regeneration of skin and organs as well as an elevated somatic mutation rate. Significantly, this high mutation rate did not result in detectable loss of fertility or viability of offspring. Overall, our findings strongly suggest that extreme celerity, an environmental factor rarely considered, can produce strikingly rapid developmental changes in morphology even in mammalian systems and open the door to future studies on the impact of celerity on genetics and morphology.


July 7, 2019  |  

A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer.

Although human LINE-1 (L1) elements are actively mobilized in many cancers, a role for somatic L1 retrotransposition in tumor initiation has not been conclusively demonstrated. Here, we identify a novel somatic L1 insertion in the APC tumor suppressor gene that provided us with a unique opportunity to determine whether such insertions can actually initiate colorectal cancer (CRC), and if so, how this might occur. Our data support a model whereby a hot L1 source element on Chromosome 17 of the patient’s genome evaded somatic repression in normal colon tissues and thereby initiated CRC by mutating the APC gene. This insertion worked together with a point mutation in the second APC allele to initiate tumorigenesis through the classic two-hit CRC pathway. We also show that L1 source profiles vary considerably depending on the ancestry of an individual, and that population-specific hot L1 elements represent a novel form of cancer risk. © 2016 Scott et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Representing genetic variation with synthetic DNA standards.

The identification of genetic variation with next-generation sequencing is confounded by the complexity of the human genome sequence and by biases that arise during library preparation, sequencing and analysis. We have developed a set of synthetic DNA standards, termed ‘sequins’, that emulate human genetic features and constitute qualitative and quantitative spike-in controls for genome sequencing. Sequencing reads derived from sequins align exclusively to an artificial in silico reference chromosome, rather than the human reference genome, which allows them them to be partitioned for parallel analysis. Here we use this approach to represent common and clinically relevant genetic variation, ranging from single nucleotide variants to large structural rearrangements and copy-number variation. We validate the design and performance of sequin standards by comparison to examples in the NA12878 reference genome, and we demonstrate their utility during the detection and quantification of variants. We provide sequins as a standardized, quantitative resource against which human genetic variation can be measured and diagnostic performance assessed.


July 7, 2019  |  

MICADo – Looking for mutations in targeted PacBio cancer data: an alignment-free method.

Targeted sequencing is commonly used in clinical application of NGS technology since it enables generation of sufficient sequencing depth in the targeted genes of interest and thus ensures the best possible downstream analysis. This notwithstanding, the accurate discovery and annotation of disease causing mutations remains a challenging problem even in such favorable context. The difficulty is particularly salient in the case of third generation sequencing technology, such as PacBio. We present MICADo, a de Bruijn graph based method, implemented in python, that makes possible to distinguish between patient specific mutations and other alterations for targeted sequencing of a cohort of patients. MICADo analyses NGS reads for each sample within the context of the data of the whole cohort in order to capture the differences between specificities of the sample with respect to the cohort. MICADo is particularly suitable for sequencing data from highly heterogeneous samples, especially when it involves high rates of non-uniform sequencing errors. It was validated on PacBio sequencing datasets from several cohorts of patients. The comparison with two widely used available tools, namely VarScan and GATK, shows that MICADo is more accurate, especially when true mutations have frequencies close to backgound noise. The source code is available at http://github.com/cbib/MICADo.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.