X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
September 1, 2018

The third revolution in sequencing technology.

Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the…

Read More »

August 1, 2018

Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies.

Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have…

Read More »

January 1, 2018

Advances in Sequencing and Resequencing in Crop Plants.

DNA sequencing technologies have changed the face of biological research over the last 20 years. From reference genomes to population level resequencing studies, these technologies have made significant contributions to our understanding of plant biology and evolution. As the technologies have increased in power, the breadth and complexity of the questions that can be asked has increased. Along with this, the challenges of managing unprecedented quantities of sequence data are mounting. This chapter describes a few aspects of the journey so far and looks forward to what may lie ahead.

Read More »

December 18, 2017

Survey on the use of whole-genome sequencing for infectious diseases surveillance: Rapid expansion of European national capacities, 2015-2016.

Whole-genome sequencing (WGS) has become an essential tool for public health surveillance and molecular epidemiology of infectious diseases and antimicrobial drug resistance. It provides precise geographical delineation of spread and enables incidence monitoring of pathogens at genotype level. Coupled with epidemiological and environmental investigations, it delivers ultimate resolution for tracing sources of epidemic infections. To ascertain the level of implementation of WGS-based typing for national public health surveillance and investigation of prioritized diseases in the European Union (EU)/European Economic Area (EEA), two surveys were conducted in 2015 and 2016. The surveys were designed to determine the national public health reference…

Read More »

October 16, 2017

Molecular approaches for high throughput detection and quantification of genetically modified crops: A review.

As long as the genetically modified crops are gaining attention globally, their proper approval and commercialization need accurate and reliable diagnostic methods for the transgenic content. These diagnostic techniques are mainly divided into two major groups, i.e., identification of transgenic (1) DNA and (2) proteins from GMOs and their products. Conventional methods such as PCR (polymerase chain reaction) and enzyme-linked immunosorbent assay (ELISA) were routinely employed for DNA and protein based quantification respectively. Although, these Techniques (PCR and ELISA) are considered as significantly convenient and productive, but there is need for more advance technologies that allow for high throughput detection…

Read More »

October 11, 2017

A critical comparison of technologies for a plant genome sequencing project

A high quality genome sequence of your model organism is an essential starting point for many studies. Old clone based methods are slow and expensive, whereas faster, cheaper short read only assemblies can be incomplete and highly fragmented, which minimises their usefulness. The last few years have seen the introduction of many new technologies for genome assembly. These new technologies and new algorithms are typically benchmarked on microbial genomes or, if they scale appropriately, human. However, plant genomes can be much more repetitive and larger than human, and plant biology makes obtaining high quality DNA free from contaminants difficult. Reflecting…

Read More »

July 12, 2017

Scaffolding of long read assemblies using long range contact information.

Long read technologies have revolutionized de novo genome assembly by generating contigs orders of magnitude longer than that of short read assemblies. Although assembly contiguity has increased, it usually does not reconstruct a full chromosome or an arm of the chromosome, resulting in an unfinished chromosome level assembly. To increase the contiguity of the assembly to the chromosome level, different strategies are used which exploit long range contact information between chromosomes in the genome.We develop a scalable and computationally efficient scaffolding method that can boost the assembly contiguity to a large extent using genome-wide chromatin interaction data such as Hi-C.we…

Read More »

May 1, 2017

New advances in sequence assembly

Extract It may be hard to believe, but the idea of sequence assembly is around 40 years old. Consider this pair of quotes from Rodger Staden (Staden 1979): “With modern fast sequencing techniques and suitable computer programs it is now possible to sequence whole genomes without the need of restriction maps.” “If the 5' end of the sequence from one gel reading is the same as the 3' end of the sequence from another the data is said to overlap. If the overlap is of sufficient length to distinguish it from being a repeat in the sequence the two sequences…

Read More »

January 1, 2017

The state of whole-genome sequencing

Over the last decade, a technological paradigm shift has slashed the cost of DNA sequencing by over five orders of magnitude. Today, the cost of sequencing a human genome is a few thousand dollars, and it continues to fall. Here, we review the most cost-effective platforms for whole-genome sequencing (WGS) as well as emerging technologies that may displace or complement these. We also discuss the practical challenges of generating and analyzing WGS data, and how WGS has unlocked new strategies for discovering genes and variants underlying both rare and common human diseases.

Read More »

November 2, 2016

Breaking Lander-Waterman’s coverage bound.

Lander-Waterman's coverage bound establishes the total number of reads required to cover the whole genome of size G bases. In fact, their bound is a direct consequence of the well-known solution to the coupon collector's problem which proves that for such genome, the total number of bases to be sequenced should be O(G ln G). Although the result leads to a tight bound, it is based on a tacit assumption that the set of reads are first collected through a sequencing process and then are processed through a computation process, i.e., there are two different machines: one for sequencing and…

Read More »

October 18, 2016

Deep sequencing of 10,000 human genomes.

We report on the sequencing of 10,545 human genomes at 30×-40× coverage with an emphasis on quality metrics and novel variant and sequence discovery. We find that 84% of an individual human genome can be sequenced confidently. This high-confidence region includes 91.5% of exon sequence and 95.2% of known pathogenic variant positions. We present the distribution of over 150 million single-nucleotide variants in the coding and noncoding genome. Each newly sequenced genome contributes an average of 8,579 novel variants. In addition, each genome carries on average 0.7 Mb of sequence that is not found in the main build of the…

Read More »

August 26, 2016

Probabilistic viral quasispecies assembly

Viruses are pathogens that cause infectious diseases. The swarm of virions is subject to the host's immune pressure and possibly antiviral therapy. It may escape this selective pressure and gain selective advantage by acquiring one or more of the genomic alterations: single-nucleotide variants (SNVs), loss or gain of one or more amino acids, large deletions, for example, due to alternative splicing, or recombination of different strains. Genotypic antiretroviral drug resistance testing is performed via sequencing. Next-generation sequencing (NGS) technologies revolutionized assessing viral genetic diversity experimentally. In viral quasispecies analysis, there are two main goals: the identification of low-frequency variants and…

Read More »

August 1, 2016

A comparison of tools for the simulation of genomic next-generation sequencing data.

Computer simulation of genomic data has become increasingly popular for assessing and validating biological models or for gaining an understanding of specific data sets. Several computational tools for the simulation of next-generation sequencing (NGS) data have been developed in recent years, which could be used to compare existing and new NGS analytical pipelines. Here we review 23 of these tools, highlighting their distinct functionality, requirements and potential applications. We also provide a decision tree for the informed selection of an appropriate NGS simulation tool for the specific question at hand.

Read More »

June 16, 2016

The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century.

Microsatellites, or simple sequence repeats (SSRs), have long played a major role in genetic studies due to their typically high polymorphism. They have diverse applications, including genome mapping, forensics, ascertaining parentage, population and conservation genetics, identification of the parentage of polyploids, and phylogeography. We compare SSRs and newer methods, such as genotyping by sequencing (GBS) and restriction site associated DNA sequencing (RAD-Seq), and offer recommendations for researchers considering which genetic markers to use. We also review the variety of techniques currently used for identifying microsatellite loci and developing primers, with a particular focus on those that make use of next-generation…

Read More »

April 12, 2016

Challenges, solutions, and quality metrics of personal genome assembly in advancing precision medicine.

Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the…

Read More »

1 2

Subscribe for blog updates:

Archives