fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Next-generation sequence analysis reveals transfer of methicillin resistance to a methicillin-susceptible Staphylococcus aureus strain that subsequently caused a methicillin-resistant Staphylococcus aureus outbreak: a descriptive study.

Resistance to methicillin in Staphylococcus aureus is caused primarily by the mecA gene, which is carried on a mobile genetic element, the staphylococcal cassette chromosome mec (SCCmec). Horizontal transfer of this element is supposed to be an important factor in the emergence of new clones of methicillin-resistant Staphylococcus aureus (MRSA) but has been rarely observed in real time. In 2012, an outbreak occurred involving a health care worker (HCW) and three patients, all carrying a fusidic acid-resistant MRSA strain. The husband of the HCW was screened for MRSA carriage, but only a methicillin-susceptible S. aureus (MSSA) strain, which was also…

Read More »

Sunday, July 7, 2019

Staphylococcus aureus CC395 harbours a novel composite staphylococcal cassette chromosome mec element.

CoNS species are likely reservoirs of the staphylococcal cassette chromosome mec (SCC mec ) in Staphylococcus aureus . S . aureus CC395 is unique as it is capable of exchanging DNA with CoNS via bacteriophages, which are also known to mediate transfer of SCC mec .To analyse the structure and putative origin of the SCC mec element in S . aureus CC395.The only MRSA CC395 strain described in the literature, JS395, was subjected to WGS, and its SCC mec element was compared with those found in CoNS species and other S. aureus strains.JS395 was found to carry an unusually large…

Read More »

Sunday, July 7, 2019

Characterization of a PVL-negative community-acquired methicillin-resistant Staphylococcus aureus strain of sequence type 88 in China.

Sequence type 88 community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strain SR434, isolated from an outpatient with skin and soft tissue infection, was subjected to whole genome sequencing, antimicrobial susceptibility testing, mouse skin infection model and hemolysis analysis to identify its virulence and resistance determinants. MRSA strain SR434 is resistant to clindamycin, erythromycin and fosfomycin. Four plasmids with resistance genes were identified in this strain, including a 20,658bp blaZ-carrying plasmid, a 2473bp ermC-carrying plasmid, a 2622bp fosB7-carrying plasmid (86% identity with plasmid in a ST2590 MRSA strain) and a 4817bp lnuA-carrying plasmid (99% identity with pLNU4 from bovine coagulase-nagetive Staphylococci). This strain…

Read More »

Sunday, July 7, 2019

Complete genome sequence of a livestock-associated methicillin-resistant Staphylococcus aureus sequence type 5 isolate from the United States.

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) may be the largest MRSA reservoir outside the hospital setting. One concern with LA-MRSA is the acquisition of novel mobile genetic elements by these isolates. Here, we report the complete genome sequence of a swine LA-MRSA sequence type 5 isolate from the United States.

Read More »

Sunday, July 7, 2019

Complete genome sequence of livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 isolated from swine in the United States.

Methicillin-resistant Staphylococcus aureus (MRSA) colonizes and causes disease in many animal species. Livestock-associated MRSA (LA-MRSA) isolates are represented by isolates of the sequence type 398 (ST398). These isolates are considered to be livestock adapted. This report provides the complete genome sequence of one swine-associated LA-MRSA ST398 isolate from the United States.

Read More »

Sunday, July 7, 2019

Complete genome sequence and annotation of the Staphylococcus aureus strain HG001.

Staphylococcus aureus is an opportunistic Gram-positive pathogen responsible for a wide range of infections from minor skin abscesses to life-threatening diseases. Here, we report the draft genome assembly and current annotation of the HG001 strain, a derivative of the RN1 (NCT8325) strain with restored rbsU (a positive activator of SigB). Copyright © 2017 Caldelari et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of super biofilm-elaborating Staphylococcus aureus isolated in Japan.

Staphylococcus aureus JP080, previously named TF2758, is a clinical isolate from an atheroma and a super biofilm-elaborating strain whose biofilm elaboration is dependent solely on polysaccharide poly-N-acetylglucosamine/polysaccharide intercellular adhesin (PNAG/PIA). Here, we report the complete genome sequence of strain JP080, which consists of one chromosome and one circular plasmid. Copyright © 2017 Yu et al.

Read More »

Sunday, July 7, 2019

Genomic comparison between Staphylococcus aureus GN strains clinically isolated from a familial infection case: IS1272 transposition through a novel inverted repeat-replacing mechanism.

A bacterial insertion sequence (IS) is a mobile DNA sequence carrying only the transposase gene (tnp) that acts as a mutator to disrupt genes, alter gene expressions, and cause genomic rearrangements. “Canonical” ISs have historically been characterized by their terminal inverted repeats (IRs), which may form a stem-loop structure, and duplications of a short (non-IR) target sequence at both ends, called target site duplications (TSDs). The IS distributions and virulence potentials of Staphylococcus aureus genomes in familial infection cases are unclear. Here, we determined the complete circular genome sequences of familial strains from a Panton-Valentine leukocidin (PVL)-positive ST50/agr4 S. aureus…

Read More »

Sunday, July 7, 2019

Transfer of the methicillin resistance genomic island among staphylococci by conjugation.

Methicillin resistance creates a major obstacle for treatment of Staphylococcus aureus infections. The resistance gene, mecA, is carried on a large (20 kb to?>?60 kb) genomic island, staphylococcal cassette chromosome mec (SCCmec), that excises from and inserts site-specifically into the staphylococcal chromosome. However, although SCCmec has been designated a mobile genetic element, a mechanism for its transfer has not been defined. Here we demonstrate the capture and conjugative transfer of excised SCCmec. SCCmec was captured on pGO400, a mupirocin-resistant derivative of the pGO1/pSK41 staphylococcal conjugative plasmid lineage, and pGO400::SCCmec (pRM27) was transferred by filter-mating into both homologous and heterologous S.…

Read More »

Sunday, July 7, 2019

Draft genome sequence of lytic bacteriophage SA7 infecting Staphylococcus aureus isolates

Staphylococcus aureus is a Gram-positive and a round-shaped bacterium of Firmicutes phylum, and is a common cause of skin infections, respiratory infections, and food poisoning. Bacteriophages infecting S. aureus can be an effective treatment for S. aureus infections. Here, the draft genomic sequence is announced for a lytic bacteriophage SA7 infecting S. aureus isolates. The bacteriophage SA7 was isolated from a sewage water sample near a livestock farm in Chungcheongnam-do, South Korea. SA7 has a genome of 34,730 bp and 34.1% G + C content. The genome has 53 protein-coding genes, 23 of which have predicted functions from BLASTp analysis,…

Read More »

Sunday, July 7, 2019

Complete genome sequences of Canadian epidemic methicillin-resistant Staphylococcus aureus strains CMRSA3 and CMRSA6.

Methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 8 (CC8) sequence type 239 (ST239) represents a predominant hospital-associated MRSA sublineage present worldwide. The Canadian epidemic MRSA strains CMRSA3 and CMRSA6 are moderately virulent members of this group but are closely related to the highly virulent strain TW20. Whole-genome sequencing of CMRSA3 and CMRSA6 was conducted to identify genetic determinants associated with their virulence.

Read More »

Sunday, July 7, 2019

Complete genome sequence of a Staphylococcus aureus sequence type 612 isolate from an Australian horse.

Staphylococcus aureus is a serious pathogen of humans and animals. Multilocus sequence type 612 is dominant and highly virulent in South African hospitals but relatively uncommon elsewhere. We present the complete genome sequence of methicillin-resistant Staphylococcus aureus strain SVH7513, isolated from a horse at a veterinary clinic in New South Wales, Australia.

Read More »

1 2

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »