Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
August 31, 2017

Complete genome sequence of Bacillus velezensis GQJK49, a plant growth-promoting rhizobacterium with antifungal activity.

Bacillus velezensis GQJK49 is a plant growth-promoting rhizobacterium with antifungal activity, which was isolated from Lycium barbarum L. rhizosphere. Here, we report the complete genome sequence of B. velezensis GQJK49. Twelve gene clusters related to its biosynthesis of secondary metabolites, including antifungal and antibacterial antibiotics, were predicted. Copyright © 2017 Ma et al.

Read More »

April 6, 2017

Draft genome sequence of the rhizobacterium Pseudomonas chlororaphis PCL1601, displaying biocontrol against soilborne phytopathogens.

In this study, we present the draft genome sequence of the bacterial strain Pseudomonas chlororaphis PCL1601. This bacterium was isolated from the rhizosphere of healthy avocado trees and displayed antagonistic and biological control activities against different soilborne phytopathogenic fungi and oomycetes. Copyright © 2017 Vida et al.

Read More »

September 6, 2016

Genomic studies of nitrogen-fixing rhizobial strains from Phaseolus vulgaris seeds and nodules.

Rhizobia are soil bacteria that establish symbiotic relationships with legumes and fix nitrogen in root nodules. We recently reported that several nitrogen-fixing rhizobial strains, belonging to Rhizobium phaseoli, R. trifolii, R. grahamii and Sinorhizobium americanum, were able to colonize Phaseolus vulgaris (common bean) seeds. To gain further insight into the traits that support this ability, we analyzed the genomic sequences and proteomes of R. phaseoli (CCGM1) and S. americanum (CCGM7) strains from seeds and compared them with those of the closely related strains CIAT652 and CFNEI73, respectively, isolated only from nodules.In a fine structural study of the S. americanum genomes,…

Read More »

August 23, 2016

High quality draft genome sequence of the type strain of Pseudomonas lutea OK2(T), a phosphate-solubilizing rhizospheric bacterium.

Pseudomonas lutea OK2(T) (=LMG 21974(T), CECT 5822(T)) is the type strain of the species and was isolated from the rhizosphere of grass growing in Spain in 2003 based on its phosphate-solubilizing capacity. In order to identify the functional significance of phosphate solubilization in Pseudomonas Plant growth promoting rhizobacteria, we describe here the phenotypic characteristics of strain OK2(T) along with its high-quality draft genome sequence, its annotation, and analysis. The genome is comprised of 5,647,497 bp with 60.15 % G?+?C content. The sequence includes 4,846 protein-coding genes and 95 RNA genes.

Read More »

September 1, 2015

Complete genome sequence of the rhizobacterium Pseudomonas trivialis strain IHBB745 with multiple plant growth-promoting activities and tolerance to desiccation and alkalinity

The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. Copyright © 2015 Gulati et al.

Read More »

August 13, 2015

Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis.

The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties. Copyright © 2015 Köberl et al.

Read More »

July 1, 2015

Complete genome sequence of Paenibacillus beijingensis 7188(T) (=DSM 24997(T)), a novel rhizobacterium from jujube garden soil.

We present here the complete genome sequence of a novel species Paenibacillus beijingensis 7188(T) (=DSM 24997(T)) from jujube rhizosphere soil that consists of one circular chromosome of 5,749,967bp with a GC content of 52.5%. On the significance of first genome information in this species, the genome sequence of strain 7188(T) will provide a better comprehension of Paenibacillus species for the practical uses as a biofertilizer in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

May 7, 2015

Complete genome sequence of biocontrol strain Pseudomonas fluorescens LBUM223.

Pseudomonas fluorescens LBUM223 is a plant growth-promoting rhizobacterium (PGPR) with biocontrol activity against various plant pathogens. It produces the antimicrobial metabolite phenazine-1-carboxylic acid, which is involved in the biocontrol of Streptomyces scabies, the causal agent of common scab of potato. Here, we report the complete genome sequence of P. fluorescens LBUM223. Copyright © 2015 Roquigny et al.

Read More »

December 1, 2014

Complete genome sequence of Pseudomonas rhizosphaerae IH5(T) (=DSM 16299(T)), a phosphate-solubilizing rhizobacterium for bacterial biofertilizer.

Pseudomonas rhizosphaerae IH5(T) (=DSM 16299(T)), isolated from the rhizospheric soil of grass growing in Spain, has been reported as a novel species of the genus Pseudomonas harboring insoluble phosphorus solubilizing activity. To understanding the multifunctional biofertilizer better, we report the complete genome sequence of P. rhizosphaerae IH5(T). Copyright © 2014 Elsevier B.V. All rights reserved.

Read More »

Subscribe for blog updates: