X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
November 1, 2018

Computational tools to unmask transposable elements.

A substantial proportion of the genome of many species is derived from transposable elements (TEs). Moreover, through various self-copying mechanisms, TEs continue to proliferate in the genomes of most species. TEs have contributed numerous regulatory, transcript and protein innovations and have also been linked to disease. However, notwithstanding their demonstrated impact, many genomic studies still exclude them because their repetitive nature results in various analytical complexities. Fortunately, a growing array of methods and software tools are being developed to cater for them. This Review presents a summary of computational resources for TEs and highlights some of the challenges and remaining…

Read More »

November 1, 2018

Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics.

Plant-beneficial phenazine-producing Pseudomonas spp. are proficient biocontrol agents of soil-dwelling plant pathogens. Phenazines are redox-active molecules that display broad-spectrum antibiotic activity toward many fungal, bacterial and oomycete plant pathogens. Phenazine compounds also play a role in the persistence and survival of Pseudomonas spp. in the rhizosphere. This mini-review focuses on plant-beneficial phenazine-producing Pseudomonas spp. from the P. fluorescens species complex, which includes numerous well-known phenazine-producing strains of biocontrol interest. In this review the current knowledge on phenazine biosynthesis and regulation, the role played by phenazines in biocontrol and rhizosphere colonization, as well as exciting new advances in the genomics of…

Read More »

November 1, 2018

Omics in weed science: A perspective from genomics, transcriptomics, and metabolomics approaches

Modern high-throughput molecular and analytical tools offer exciting opportunities to gain a mechanistic understanding of unique traits of weeds. During the past decade, tremendous progress has been made within the weed science discipline using genomic techniques to gain deeper insights into weedy traits such as invasiveness, hybridization, and herbicide resistance. Though the adoption of newer “omics” techniques such as proteomics, metabolomics, and physionomics has been slow, applications of these omics platforms to study plants, especially agriculturally important crops and weeds, have been increasing over the years. In weed science, these platforms are now used more frequently to understand mechanisms of…

Read More »

November 1, 2018

Methanogenic and bacterial endosymbionts of free-living anaerobic ciliates

Trimyema compressum thrives in anoxic freshwater environments in which it preys on bacteria and grows with fermentative metabolisms. Like many anaerobic protozoa, instead of mitochondria, T. compressum possess hydrogenosomes, which are hydrogen-producing, energy-generating organelles characteristic of anaerobic protozoa and fungi. The cytoplasm of T. compressum harbours hydrogenotrophic methanogens that consume the hydrogen produced by hydrogenosome, which confers an energetic advantage to the host ciliate. Symbiotic associations between methanogenic archaea and Trimyema ciliates are thought to be established independently and/or repeatedly in their evolutional history. In addition to methanogenic symbionts, T. compressum houses bacterial symbiont TC1 whose function is unknown in…

Read More »

October 6, 2018

Regulation of neuronal differentiation, function, and plasticity by alternative splicing.

Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type-specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally,…

Read More »

October 1, 2018

Genome-wide researches and applications on Dendrobium.

This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n?=?38. Only a few of genetic studies were reported in Dendrobium. After revealing of…

Read More »

October 1, 2018

Computational analysis of alternative splicing in plant genomes.

Computational analyses play crucial roles in characterizing splicing isoforms in plant genomes. In this review, we provide a survey of computational tools used in recently published, genome-scale splicing analyses in plants. We summarize the commonly used software and pipelines for read mapping, isoform reconstruction, isoform quantification, and differential expression analysis. We also discuss methods for analyzing long reads and the strategies to combine long and short reads in identifying splicing isoforms. We review several tools for characterizing local splicing events, splicing graphs, coding potential, and visualizing splicing isoforms. We further discuss the procedures for identifying conserved splicing isoforms across plant…

Read More »

October 1, 2018

Genomic insights into date palm origins.

With the development of next-generation sequencing technology, the amount of date palm (Phoenix dactylifera L.) genomic data has grown rapidly and yielded new insights into this species and its origins. Here, we review advances in understanding of the evolutionary history of the date palm, with a particular emphasis on what has been learned from the analysis of genomic data. We first record current genomic resources available for date palm including genome assemblies and resequencing data. We discuss new insights into its domestication and diversification history based on these improved genomic resources. We further report recent discoveries such as the existence…

Read More »

October 1, 2018

Eco-friendly Management of Karnal Bunt (Neovossia indica) of Wheat

Karnal bunt incited by Neovossia indica is one of the most important disease of wheat crop. To develop an eco-friendly management practice against Karnal bunt of wheat, integration of fungicidal seed treatment with foliar sprays of phytoextracts, bio-control agent and fungicide revealed. Uses of Thiram 75DS or Kavach 75WP @2g/Kg, Dithane M-45 or Captan 50WP@2.5g/Kg, Vitavax 75WP@2.5g/Kg, Tilt 25EC or Raxil 2DS@1mL/Kg or Pseudomonas fluorescens@5 mL/Kg or Trichoderma viride (Ecoderma) or T. harzianum@5 mL/Kg seed treatment for eliminating primary inoculum (teliospores). Seed soaking in Lantana (L. camara) or Eucalyptus (E. globulus) or Akh (Calotropis procera) or Kali basuti (Eupatorium adenophorum)…

Read More »

September 19, 2018

Myxobacteria: Unraveling the potential of a unique microbiome niche

Natural products obtained from microorganisms have been playing an imperative role in drug discovery for decades. Hence, rightfully, microorganisms are considered as the richest source of biochemical remedies. In this review, we represent an unexplored family of bacteria considered to be prolific producers of diverse metabolites. Myxobacteria are gram-negative bacteria which have been reported to produce large families of secondary metabolites with prominent antimicrobial, antifungal, and antitumor activities. Klaus Gerth, Norbert Bedorf, Herbert Irschik, and Hans Reichenbach observed the antifungal activity of Sorangium cellulosum against Mucor hiemalis. In 2006, Hans Reichenbach and his team obtained a novel macrolide cruentaren A…

Read More »

September 1, 2018

Microbial sequence typing in the genomic era.

Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To…

Read More »

September 1, 2018

Defining cell identity with single cell omics.

Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a…

Read More »

September 1, 2018

Koala genome insights.

A new study in Nature Genetics leverages long-read sequencing to generate a high-quality reference genome for the modern koala, Phascolarctos cinereus, and reports various inferences about adaptation and conservation of this species classified as ‘vulnerable’.

Read More »

September 1, 2018

The third revolution in sequencing technology.

Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the…

Read More »

September 1, 2018

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.

Read More »

1 3 4 5 6 7 24

Subscribe for blog updates:

Archives