DNA N6-methyladenine (6mA) protects against restriction enzymes in bacteria. However, isolated reports have suggested additional activities and its presence in other organisms, such as unicellular eukaryotes. New data now find that 6mA may have a gene regulatory function in green alga, worm, and fly, suggesting m6A as a potential “epigenetic” mark. Copyright © 2015 Elsevier Inc. All rights reserved.
Bacillus strain X1 is the source strain for the restriction enzyme BstXI. Its complete sequence and full methylome was determined using single-molecule real-time (SMRT) sequencing. Copyright © 2015 Fomenkov et al.
Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA. Copyright © 2015 Mariita et al.
Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we…
Bacillus subtilis (Ehrenburg) Cohn ATCC 49760, deposited as Bacillus globigii, is the source strain for the restriction enzymes BglI and BglII. Its complete sequence and full methylome were determined using single-molecule real-time (SMRT) sequencing. Copyright © 2016 Morgan.
Heritable DNA methylation imprints are ubiquitous and underlie genetic variability from bacteria to humans. In microbial genomes, DNA methylation has been implicated in gene transcription, DNA replication and repair, nucleoid segregation, transposition and virulence of pathogenic strains. Despite the importance of local (hypo)methylation at specific loci, how and when these patterns are established during the cell cycle remains poorly characterized. Taking advantage of the small genomes and the synchronizability of a-proteobacteria, we discovered that conserved determinants of the cell cycle transcriptional circuitry establish specific hypomethylation patterns in the cell cycle model system Caulobacter crescentus. We used genome-wide methyl-N6-adenine (m6A-) analyses…