Menu
July 7, 2019  |  

First complete genome sequence of Staphylococcus xylosus, a meat starter culture and a host to propagate Staphylococcus aureus phages.

Staphylococcus xylosus is a bacterial species used in meat fermentation and a commensal microorganism found on animals. We present the first complete circular genome from this species. The genome is composed of 2,757,557 bp, with a G+C content of 32.9%, and contains 2,514 genes and 79 structural RNAs. Copyright © 2014 Labrie et al.


July 7, 2019  |  

Whole-genome assembly of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 carbapenemases using Single-Molecule, Real-Time Sequencing.

The whole-genome sequence of a carbapenem-resistant Klebsiella pneumoniae strain, PittNDM01, which coproduces NDM-1 and OXA-232 carbapenemases, was determined in this study. The use of single-molecule, real-time (SMRT) sequencing provided a closed genome in a single sequencing run. K. pneumoniae PittNDM01 has a single chromosome of 5,348,284 bp and four plasmids: pPKPN1 (283,371 bp), pPKPN2 (103,694 bp), pPKPN3 (70,814 bp), and pPKPN4 (6,141 bp). The contents of the chromosome were similar to that of the K. pneumoniae reference genome strain MGH 78578, with the exception of a large inversion spanning 23.3% of the chromosome. In contrast, three of the four plasmids are unique. The plasmid pPKPN1, an IncHI1B-like plasmid, carries the blaNDM-1, armA, and qnrB1 genes, along with tellurium and mercury resistance operons. blaNDM-1 is carried on a unique structure in which Tn125 is further bracketed by IS26 downstream of a class 1 integron. The IncFIA-like plasmid pPKPN3 also carries an array of resistance elements, including blaCTX-M-15 and a mercury resistance operon. The ColE-type plasmid pPKPN4 carrying blaOXA-232 is identical to a plasmid previously reported from France. SMRT sequencing was useful in resolving the complex bacterial genomic structures in the de novo assemblies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete sequence of a conjugative IncN plasmid harboring blakpc-2, blashv-12, and qnrS1 from an Escherichia coli sequence type 648 strain

We sequenced a novel conjugative blaKPC-2-harboring IncN plasmid, pYD626E, from an Escherichia coli sequence type 648 strain previously identified in Pittsburgh, Pennsylvania. pYD626E was 72,800 bp long and carried four ß-lactamase genes, blaKPC-2, blaSHV-12, blaLAP-1, and blaTEM-1. In addition, it harbored qnrS1 (fluoroquinolone resistance) and dfrA14 (trimethoprim resistance). The plasmid profile and clinical history supported the in vivo transfer of this plasmid between Klebsiella pneumoniae and Escherichia coli. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms.

Horseweed (Conyza canadensis), a member of the Compositae (Asteraceae) family, was the first broadleaf weed to evolve resistance to glyphosate. Horseweed, one of the most problematic weeds in the world, is a true diploid (2n = 2x = 18), with the smallest genome of any known agricultural weed (335 Mb). Thus, it is an appropriate candidate to help us understand the genetic and genomic bases of weediness. We undertook a draft de novo genome assembly of horseweed by combining data from multiple sequencing platforms (454 GS-FLX, Illumina HiSeq 2000, and PacBio RS) using various libraries with different insertion sizes (approximately 350 bp, 600 bp, 3 kb, and 10 kb) of a Tennessee-accessed, glyphosate-resistant horseweed biotype. From 116.3 Gb (approximately 350× coverage) of data, the genome was assembled into 13,966 scaffolds with 50% of the assembly = 33,561 bp. The assembly covered 92.3% of the genome, including the complete chloroplast genome (approximately 153 kb) and a nearly complete mitochondrial genome (approximately 450 kb in 120 scaffolds). The nuclear genome is composed of 44,592 protein-coding genes. Genome resequencing of seven additional horseweed biotypes was performed. These sequence data were assembled and used to analyze genome variation. Simple sequence repeat and single-nucleotide polymorphisms were surveyed. Genomic patterns were detected that associated with glyphosate-resistant or -susceptible biotypes. The draft genome will be useful to better understand weediness and the evolution of herbicide resistance and to devise new management strategies. The genome will also be useful as another reference genome in the Compositae. To our knowledge, this article represents the first published draft genome of an agricultural weed.© 2014 American Society of Plant Biologists. All Rights Reserved.


July 7, 2019  |  

Genomics of wood-degrading fungi.

Woody plants convert the energy of the sun into lignocellulosic biomass, which is an abundant substrate for bioenergy production. Fungi, especially wood decayers from the class Agaricomycetes, have evolved ways to degrade lignocellulose into its monomeric constituents, and understanding this process may facilitate the development of biofuels. Over the past decade genomics has become a powerful tool to study the Agaricomycetes. In 2004 the first sequenced genome of the white rot fungus Phanerochaete chrysosporium revealed a rich catalog of lignocellulolytic enzymes. In the decade that followed the number of genomes of Agaricomycetes grew to more than 75 and revealed a diversity of wood-decaying strategies. New technologies for high-throughput functional genomics are now needed to further study these organisms. Copyright © 2014 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from Neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting.

NDM-producing Klebsiella pneumoniae strains represent major clinical and infection control challenges, particularly in resource-limited settings with high rates of antimicrobial resistance. Determining whether transmission occurs at a gene, plasmid, or bacterial strain level and within hospital and/or the community has implications for monitoring and controlling spread. Whole-genome sequencing (WGS) is the highest-resolution typing method available for transmission epidemiology. We sequenced carbapenem-resistant K. pneumoniae isolates from 26 individuals involved in several infection case clusters in a Nepali neonatal unit and 68 other clinical Gram-negative isolates from a similar time frame, using Illumina and PacBio technologies. Within-outbreak chromosomal and closed-plasmid structures were generated and used as data set-specific references. Three temporally separated case clusters were caused by a single NDM K. pneumoniae strain with a conserved set of four plasmids, one being a 304,526-bp plasmid carrying blaNDM-1. The plasmids contained a large number of antimicrobial/heavy metal resistance and plasmid maintenance genes, which may have explained their persistence. No obvious environmental/human reservoir was found. There was no evidence of transmission of outbreak plasmids to other Gram-negative clinical isolates, although blaNDM variants were present in other isolates in different genetic contexts. WGS can effectively define complex antimicrobial resistance epidemiology. Wider sampling frames are required to contextualize outbreaks. Infection control may be effective in terminating outbreaks caused by particular strains, even in areas with widespread resistance, although this study could not demonstrate evidence supporting specific interventions. Larger, detailed studies are needed to characterize resistance genes, vectors, and host strains involved in disease, to enable effective intervention. Copyright © 2014 Stoesser et al.


July 7, 2019  |  

The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes.

Whole-genome sequences are now available for many microbial species and clades, however, existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The Harvest suite is open-source and freely available from: http://github.com/marbl/harvest.


July 7, 2019  |  

Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages.

Third-generation cephalosporins are a class of ß-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.


July 7, 2019  |  

Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics.

DNA replication in Escherichia coli is normally initiated at a single origin, oriC, dependent on initiation protein DnaA. However, replication can be initiated elsewhere on the chromosome at multiple ectopic oriK sites. Genetic evidence indicates that initiation from oriK depends on RNA-DNA hybrids (R-loops), which are normally removed by enzymes such as RNase HI to prevent oriK from misfiring during normal growth. Initiation from oriK sites occurs in RNase HI-deficient mutants, and possibly in wild-type cells under certain unusual conditions. Despite previous work, the locations of oriK and their impact on genome stability remain unclear. We combined 2D gel electrophoresis and whole genome approaches to map genome-wide oriK locations. The DNA copy number profiles of various RNase HI-deficient strains contained multiple peaks, often in consistent locations, identifying candidate oriK sites. Removal of RNase HI protein also leads to global alterations of replication fork migration patterns, often opposite to normal replication directions, and presumably eukaryote-like replication fork merging. Our results have implications for genome stability, offering a new understanding of how RNase HI deficiency results in R-loop-mediated transcription-replication conflict, as well as inappropriate replication stalling or blockage at Ter sites outside of the terminus trap region and at ribosomal operons. © 2013 John Wiley & Sons Ltd.


July 7, 2019  |  

Pseudomonas syringae CC1557: a highly virulent strain with an unusually small type III effector repertoire that includes a novel effector.

Both type III effector proteins and nonribosomal peptide toxins play important roles for Pseudomonas syringae pathogenicity in host plants, but whether and how these pathways interact to promote infection remains unclear. Genomic evidence from one clade of P. syringae suggests a tradeoff between the total number of type III effector proteins and presence of syringomycin, syringopeptin, and syringolin A toxins. Here, we report the complete genome sequence from P. syringae CC1557, which contains the lowest number of known type III effectors to date and has also acquired genes similar to sequences encoding syringomycin pathways from other strains. We demonstrate that this strain is pathogenic on Nicotiana benthamiana and that both the type III secretion system and a new type III effector, hopBJ1, contribute to pathogenicity. We further demonstrate that activity of HopBJ1 is dependent on residues structurally similar to the catalytic site of Escherichia coli CNF1 toxin. Taken together, our results provide additional support for a negative correlation between type III effector repertoires and the potential to produce syringomycin-like toxins while also highlighting how genomic synteny and bioinformatics can be used to identify and characterize novel virulence proteins.


July 7, 2019  |  

Complete genome sequence of Staphylococcus aureus Z172, a vancomycin-intermediate and daptomycin-nonsusceptible methicillin-resistant strain isolated in Taiwan.

We report the complete genome sequence of Z172, a representative strain of sequence type 239-staphylococcal cassette chromosome mec type III (ST239-SCCmec type III) hospital-associated methicillin-resistant Staphylococcus aureus in Taiwan. Strain Z172 also exhibits a vancomycin-intermediate and daptomycin-nonsusceptible phenotype.


July 7, 2019  |  

Direct sequencing of small genomes on the Pacific Biosciences RS without library preparation.

We have developed a sequencing method on the Pacific Biosciences RS sequencer (the PacBio) for small DNA molecules that avoids the need for a standard library preparation. To date this approach has been applied toward sequencing single-stranded and double-stranded viral genomes, bacterial plasmids, plasmid vector models for DNA-modification analysis, and linear DNA fragments covering an entire bacterial genome. Using direct sequencing it is possible to generate sequence data from as little as 1 ng of DNA, offering a significant advantage over current protocols which typically require 400-500 ng of sheared DNA for the library preparation.


July 7, 2019  |  

Genomic analysis of the multi-drug-resistant clinical isolate Myroides odoratimimus PR63039.

Myroides odoratimimus (M. odoratimimus) has been gradually implicated as an important nosocomial pathogen that poses a serious health threat to immunocompromised patients owing to its multi-drug resistance. However, the resistance mechanism is currently unclear. To clarify the antibiotic resistance and infectivity mechanisms of M. odoratimimus, whole genome sequencing was performed on the multi-drug-resistant M. odoratimimus strain PR63039. The genome sequence was completed with single molecule real-time (SMRT) technologies. Then, annotation was performed using RAST and IMG-ER. A number of databases and software programs were used to analyze the genomic characteristics, including GC-Profile, ISfinder, CG viewer, ARDB, CARD, ResFinder, the VFDB database, PHAST and Progressive Mauve. The M. odoratimimus PR63039 genome consisted of a chromosome and a plasmid. The genome contained a large number of resistance genes and virulence factors. The distribution of the resistance genes was distinctive, and a resistance region named MY63039-RR was found. The subsystem features generated by RAST indicated that the annotated genome had 108 genes that were potentially involved in virulence, disease and defense, all of which had strong associations with resistance and pathogenicity. The prophage analysis showed two incomplete prophages in the genome. The genomic analysis of M. odoratimimus PR63039 partially clarified its antibiotic resistance mechanisms and virulence factors. Obtaining a clear understanding of its genomic characteristics will be conducive to the management of multidrug-resistant M. odoratimimus.


July 7, 2019  |  

Genomic analysis of 495 vancomycin-resistant Enterococcus faecium reveals broad dissemination of a vanA plasmid in more than 19 clones from Copenhagen, Denmark.

From 2012 to 2014, there has been a huge increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) in Copenhagen, Denmark, with 602 patients infected or colonized with VREfm in 2014 compared with just 22 in 2012. The objective of this study was to describe the genetic epidemiology of VREfm to assess the contribution of clonal spread and horizontal transfer of the vanA transposon (Tn1546) and plasmid in the dissemination of VREfm in hospitals.VREfm from Copenhagen, Denmark (2012-14) were whole-genome sequenced. The clonal structure was determined and the structure of Tn1546-like transposons was characterized. One VREfm isolate belonging to the largest clonal group was sequenced using long-read technology to close a 37 kb vanA plasmid.Phylogeny revealed a polyclonal structure where 495 VREfm isolates were divided into 13 main groups and 7 small groups. The majority of the isolates were located in three groups (n?=?44, 100 and 218) and clonal spread of VREfm between wards and hospitals was identified. Five Tn1546-like transposon types were identified. A dominant truncated transposon (type 4, 92%) was spread across all but one VREfm group. The closed vanA plasmid was highly covered by reads from isolates containing the type 4 transposon.This study suggests that it was the dissemination of the type 4 Tn1546-like transposon and plasmid via horizontal transfer to multiple populations of E. faecium, followed by clonal spread of new VREfm clones, that contributed to the increase in and diversity of VREfm in Danish hospitals.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study.

Polymyxin antibiotics are used as last-resort therapies to treat infections caused by multidrug-resistant Gram-negative bacteria. The plasmid-mediated colistin resistance determinant MCR-1 has been identified in Enterobacteriaceae in China. We did this study to investigate the prevalence of the mcr-1 gene in clinical isolates from patients with bloodstream infections in China.Clinical isolates of Escherichia coli and Klebsiella pneumoniae were collected from patients with bloodstream infections at 28 hospitals in China, then screened for colistin resistance by broth microdilution and for the presence of the mcr-1 gene by PCR amplification. We subjected mcr-1-positive isolates to genotyping, susceptibility testing, and clinical data analysis. We established the genetic location of mcr-1 with Southern blot hybridisation, and we analysed plasmids containing mcr-1 with filter mating, electroporation, and DNA sequencing.2066 isolates, consisting of 1495 E coli isolates and 571 K pneumoniae isolates were collected. Of the 1495 E coli isolates, 20 (1%) were mcr-1-positive, whereas we detected only one (<1%) mcr-1-positive isolate among the 571 K pneumoniae isolates. All mcr-1-positive E coli and K pneumoniae isolates were resistant to colistin, with minimum inhibitory concentrations values in the range of 4-32 mg/L, except for one E coli isolate that had a minimum inhibitory concentration less than or equal to 0·06 mg/L. All 21 mcr-1-positive isolates were susceptible to tigecycline and 20 isolates (95%) were susceptible to the carbapenem and ß-lactamase inhibitor combination piperacillin and tazobactam. One mcr-1-positive E coli isolate also produced NDM-5, which confers resistance to beta-lactam antibiotics. The 21 mcr-1-positive isolates were clonally diverse and carried mcr-1 on two types of plasmids, a 33 kb IncX4 plasmid and a 61 kb Inc12 plasmid. The 30 day mortality of the patients with bloodstream infections caused by mcr-1-positive isolates was zero.mcr-1-positive isolates from bloodstream infections were rare, sporadic, and remained susceptible to many antimicrobial agents. E coli, rather than K pneumoniae, was the main host of the mcr-1 gene. Further studies are needed to clarify the clinical impact of this novel resistance gene.National Natural Science Foundation of China. Copyright © 2017 Elsevier Ltd. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.