Myroides odoratimimus (M. odoratimimus) has been gradually implicated as an important nosocomial pathogen that poses a serious health threat to immunocompromised patients owing to its multi-drug resistance. However, the resistance mechanism is currently unclear. To clarify the antibiotic resistance and infectivity mechanisms of M. odoratimimus, whole genome sequencing was performed on the multi-drug-resistant M. odoratimimus strain PR63039. The genome sequence was completed with single molecule real-time (SMRT) technologies. Then, annotation was performed using RAST and IMG-ER. A number of databases and software programs were used to analyze the genomic characteristics, including GC-Profile, ISfinder, CG viewer, ARDB, CARD, ResFinder, the VFDB database, PHAST and Progressive Mauve. The M. odoratimimus PR63039 genome consisted of a chromosome and a plasmid. The genome contained a large number of resistance genes and virulence factors. The distribution of the resistance genes was distinctive, and a resistance region named MY63039-RR was found. The subsystem features generated by RAST indicated that the annotated genome had 108 genes that were potentially involved in virulence, disease and defense, all of which had strong associations with resistance and pathogenicity. The prophage analysis showed two incomplete prophages in the genome. The genomic analysis of M. odoratimimus PR63039 partially clarified its antibiotic resistance mechanisms and virulence factors. Obtaining a clear understanding of its genomic characteristics will be conducive to the management of multidrug-resistant M. odoratimimus.
Journal: Molecular genetics and genomics
DOI: 10.1007/s00438-016-1261-5
Year: 2017