Menu
July 7, 2019  |  

Complete genome sequence of a VIM-1- producing Salmonella enterica subsp. enterica serovar Infantis isolate derived from minced pork meat.

Carbapenems are considered last-resort antibiotics used to treat human infections caused by multidrug-resistant bacteria. In 2011, VIM-1 carbapenemase-producing Salmonella enterica subsp. enterica serovar Infantis strains were isolated from livestock for the first time in Germany. Here, we announce the complete genome sequence of the first German blaVIM-1-harboring Salmonella Infantis isolate (15-SA01028) originating from food. Copyright © 2018 Borowiak et al.


July 7, 2019  |  

Molecular preadaptation to antimony resistance in Leishmania donovani on the Indian subcontinent.

Antimonials (Sb) were used for decades for chemotherapy of visceral leishmaniasis (VL). Now abandoned in the Indian subcontinent (ISC) because of Leishmania donovani resistance, this drug offers a unique model for understanding drug resistance dynamics. In a previous phylogenomic study, we found two distinct populations of L. donovani: the core group (CG) in the Gangetic plains and ISC1 in the Nepalese highlands. Sb resistance was only encountered within the CG, and a series of potential markers were identified. Here, we analyzed the development of resistance to trivalent antimonials (SbIII) upon experimental selection in ISC1 and CG strains. We observed that (i) baseline SbIII susceptibility of parasites was higher in ISC1 than in the CG, (ii) time to SbIII resistance was higher for ISC1 parasites than for CG strains, and (iii) untargeted genomic and metabolomic analyses revealed molecular changes along the selection process: these were more numerous in ISC1 than in the CG. Altogether these observations led to the hypothesis that CG parasites are preadapted to SbIII resistance. This hypothesis was experimentally confirmed by showing that only wild-type CG strains could survive a direct exposure to the maximal concentration of SbIII The main driver of this preadaptation was shown to be MRPA, a gene involved in SbIII sequestration and amplified in an intrachromosomal amplicon in all CG strains characterized so far. This amplicon emerged around 1850 in the CG, well before the implementation of antimonials for VL chemotherapy, and we discuss here several hypotheses of selective pressure that could have accompanied its emergence.IMPORTANCE The “antibiotic resistance crisis” is a major challenge for scientists and medical professionals. This steady rise in drug-resistant pathogens also extends to parasitic diseases, with antimony being the first anti-Leishmania drug that fell in the Indian subcontinent (ISC). Leishmaniasis is a major but neglected infectious disease with limited therapeutic options. Therefore, understanding how parasites became resistant to antimonials is of commanding importance. In this study, we experimentally characterized the dynamics of this resistance acquisition and show for the first time that some Leishmania populations of the ISC were preadapted to antimony resistance, likely driven by environmental factors or by drugs used in the 19th century. Copyright © 2018 Dumetz et al.


July 7, 2019  |  

Complete genome sequence of a ciprofloxacin-resistant Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 strain, PU131, isolated from a human patient in Washington State.

Strains of the ciprofloxacin-resistant (Cipr) Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 (ST198) have rapidly and extensively disseminated globally to become a major food safety and public health concern. Here, we report the complete genome sequence of a CiprS. Kentucky ST198 strain, PU131, isolated from a human patient in Washington State (USA).


July 7, 2019  |  

Whole-genome sequence of phage-resistant strain Escherichia coli DH5a.

The genomes of many strains of Escherichia coli have been sequenced, as this organism is a classic model bacterium. Here, we report the genome sequence of Escherichia coli DH5a, which is resistant to a T4 bacteriophage (CCTCC AB 2015375), while its other homologous E. coli strains, such as E. coli BL21, DH10B, and MG1655, are not resistant to phage invasions. Thus, understanding of the genome of the DH5a strain, along with comparative analysis of its genome sequence along with other sequences of E. coli strains, may help to reveal the bacteriophage resistance mechanism of E. coli. Copyright © 2018 Chen et al.


July 7, 2019  |  

Complete genome sequence of Escherichia albertii strain 1551-2, a potential extracellular and intracellular pathogen.

Escherichia albertii has recently been recognized as an emerging human and bird enteric pathogen. Here, we report the complete chromosome sequence of a clinical isolate of E. albertii strain 1551-2, which may provide information about the pathogenic potential of this new species and the mechanisms of evolution of Escherichia species. Copyright © 2018 Romão et al.


July 7, 2019  |  

Complete genome sequence of the environmental Burkholderia pseudomallei sequence type 131 isolate MSHR1435, associated with a chronic melioidosis infection.

The Burkholderia pseudomallei isolate MSHR1435 is a fully virulent environmental sequence type 131 (ST131) isolate that is epidemiologically associated with a 17.5-year chronic melioidosis infection. The completed genome will serve as a reference for studies of environmental ecology, virulence, and chronic B. pseudomallei infections. Copyright © 2018 Sahl et al.


July 7, 2019  |  

Genome sequences of two cyanobacterial strains, toxic green Microcystis aeruginosa KW (KCTC 18162P) and nontoxic brown Microcystis sp. strain MC19, under xenic culture conditions.

Bloom-forming cyanobacteria pose concerns for the environment and the health of humans and animals by producing toxins and thus lowering water quality. Here, we report near-complete genome sequences of two Microcystis strains under xenic culture conditions, which were originally isolated from two separate freshwater reservoirs from the Republic of Korea. Copyright © 2018 Jeong et al.


July 7, 2019  |  

Complete genome sequence of Lelliottia nimipressuralis type strain SGAir0187, isolated from tropical air collected in Singapore.

Lelliottia nimipressuralis type strain SGAir0187 was isolated from tropical air samples collected in Singapore. The genome was assembled with an average coverage of 180-fold using Pacific Biosciences long reads and Illumina MiSeq paired-end reads. The genome measures 4.8?Mb and contains 4,424 protein-coding genes, 83 tRNAs, and 25 rRNAs. Copyright © 2018 Heinle et al.


July 7, 2019  |  

Complete genome sequence of Escherichia coli AS19, an antibiotic-sensitive variant of E. coli strain B REL606.

The chemically mutagenized Escherichia coli strain AS19 was isolated on the basis of its enhanced sensitivity to different antibiotics, in particular to actinomycin. The strain was later modified to study rRNA modifications that confer antibiotic resistance. Here, we present the genome sequence of the variant E. coli AS19-RrmA. Copyright © 2018 Avalos et al.


July 7, 2019  |  

Complete genome sequence of Acinetobacter indicus type strain SGAir0564 isolated from tropical air collected in Singapore.

Acinetobacter indicus (Gammaproteobacteria) is a strict aerobic nonmotile bacterium. The strain SGAir0564 was isolated from air samples collected in Singapore. The complete genome is 3.1 Mb and was assembled using a combination of short and long reads. The genome contains 2,808 protein-coding genes, 80 tRNAs, and 21 rRNA subunits. Copyright © 2018 Vettath et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.