X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
November 9, 2017

Complete genome sequence of Pseudomonas corrugata strain RM1-1-4, a stress protecting agent from the rhizosphere of an oilseed rape bait plant

Pseudomonas corrugata strain RM1-1-4 is a rhizosphere colonizer of oilseed rape. A previous study has shown that this motile, Gram-negative, non-sporulating bacterium is an effective stress protecting and biocontrol agent, which protects their hosts against abiotic and biotic stresses. Here, we announce and describe the complete genome sequence of P. corrugata RM1-1-4 consisting of a single 6.1 Mb circular chromosome that encodes 5189 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes predicting functions such as detoxifying mechanisms, stress inhibitors, exoproteases, lipoproteins or volatile components as well as rhizobactin siderophores and spermidine. Further analysis of its genome…

Read More »

November 1, 2017

Complete genome sequences of two plant-associated Pseudomonas putida isolates with increased heavy-metal tolerance.

We report here the complete genome sequences of two Pseudomonas putida isolates recovered from surfac e-sterilized roots of Sida hermaphrodita The two isolates were characterized by an increased tolerance to zinc, cadmium, and lead. Furthermore, the strains showed typical plant growth-promoting properties, such as the production of indole acetic acid, cellulolytic enzymes, and siderophores. Copyright © 2017 Nesme et al.

Read More »

October 31, 2017

Comparative genomics reveals specific genetic architectures in nicotine metabolism of Pseudomonassp. JY-Q.

Microbial degradation of nicotine is an important process to control nicotine residues in the aqueous environment. In this study, a high active nicotine degradation strain namedPseudomonassp. JY-Q was isolated from tobacco waste extract (TWE). This strain could completely degrade 5.0 g l-1nicotine in 24 h under optimal culture conditions, and it showed some tolerance even at higher concentrations (10.0 g l-1) of nicotine. The complete genome of JY-Q was sequenced to understand the mechanism by which JY-Q could degrade nicotine and tolerate such high nicotine concentrations. Comparative genomic analysis indicated that JY-Q degrades nicotine through putative novel mechanisms. Two candidate…

Read More »

October 1, 2017

Complete genome sequence of a denitrifying bacterium, Pseudomonas sp. CC6-YY-74, isolated from Arctic Ocean sediment

Pseudomonas sp. CC6-YY-74, a psychrotrophic, denitrifying bacterium isolated from Arctic Ocean sediment, uses NO3- or NH4+ as the sole nitrogen source to grow at low temperatures. Here we described the complete genome of Pseudomonas sp. CC6-YY-74. The genome has one circular chromosome of 5,040,792 bp (61.73 mol% G + C content), consisting of 4747 coding genes, 68 tRNA genes, as well as six rRNA operons as 16S-23S-5S rRNA. According to the annotation results, strain CC6-YY-74 encodes 52 proteins related to nitrogen metabolism, including a complete denitrifying pathway, and more than 20 kinds of hydrolytic enzymes.

Read More »

October 1, 2017

Genomic characterization of a local epidemic Pseudomonas aeruginosa reveals specific features of the widespread clone ST395.

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with several clones being frequently associated with outbreaks in hospital settings. ST395 is among these so-called 'international' clones. We aimed here to define the biological features that could have helped the implantation and spread of the clone ST395 in hospital settings. The complete genome of a multidrug resistant index isolate (DHS01) of a large hospital outbreak was analysed. We identified DHS01-specific genetic elements, among which were identified those shared with a panel of six independent ST395 isolates responsible for outbreaks in other hospitals. DHS01 has the fifth largest chromosome of the species (7.1…

Read More »

September 7, 2017

Complete genome sequences of four extensively drug-resistant Pseudomonas aeruginosa strains, isolated from adults with ventilator-associated pneumonia at a tertiary referral hospital in Mexico City.

Four extensively drug-resistant Pseudomonas aeruginosa strains, isolated from patients with pneumonia, were sequenced using PacBio RS-II single-molecule real-time (SMRT) technology. Genome sequence analysis identified great variability among mobile genetic elements, as well as some previously undescribed genomic islands and new variants of class 1 integrons (In1402, In1403, In1404, and In1408). Copyright © 2017 Espinosa-Camacho et al.

Read More »

September 1, 2017

The rapid in vivo evolution of Pseudomonas aeruginosa in ventilator-associated pneumonia patients leads to attenuated virulence.

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of…

Read More »

September 1, 2017

Rapid and consistent evolution of colistin resistance in XDR Pseudomonas aeruginosa during morbidostat culture.

Colistin is a last resort antibiotic commonly used against multidrug-resistant strains of Pseudomonas aeruginosa To investigate the potential for in-situ evolution of resistance against colistin and to map the molecular targets of colistin resistance, we exposed two P. aeruginosa isolates to colistin using a continuous culture device known as morbidostat. As a result, colistin resistance reproducibly increased 10-fold within ten days, and 100-fold within 20 days, along with highly stereotypic, yet strain specific mutation patterns. The majority of mutations hit the pmrAB two component signaling system and genes involved in lipopolysaccharide (LPS) synthesis, including lpxC, pmrE, and migA We tracked…

Read More »

August 24, 2017

Pseudomonas aeruginosa clinical isolates in Nepal coproducing metallo-ß-lactamases and 16S rRNA methyltransferases.

A total of 11 multidrug-resistant Pseudomonas aeruginosa clinical isolates were obtained in Nepal. Four of these isolates harbored genes encoding one or more carbapenemases (DIM-1, NDM-1, and/or VIM-2), and five harbored genes encoding a 16S rRNA methyltransferase (RmtB4 or RmtF2). A novel RmtF variant, RmtF2, had a substitution (K65E) compared with the same gene in RmtF. To our knowledge, this is the first report describing carbapenemase- and 16S rRNA methyltransferase-coproducing P. aeruginosa clinical isolates in Nepal. Copyright © 2017 American Society for Microbiology.

Read More »

August 14, 2017

Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica.

Antimicrobial-producing, cold-adapted microorganisms have great potential for biotechnological applications in food, pharmaceutical, and cosmetic industries. Pseudomonas antarctica PAMC 27494, a psychrophile exhibiting antimicrobial activity, was isolated from an Antarctic freshwater sample. Here we report the complete genome of P. antarctica PAMC 27494. The strain contains a gene cluster encoding microcin B which inhibits DNA regulations by targeting the DNA gyrase. PAMC 27494 may produce R-type pyocins and also contains a complete set of proteins for the biosynthesis of adenosylcobalamin and possibly induces plant growth by supplying pyrroloquinoline quionone molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

Read More »

August 2, 2017

Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network.

Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3'-5')-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside world-the input stimuli-into intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motility-the output phenotypes. How does the 'uninformed' process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired…

Read More »

1 2 3 4 5 9

Subscribe for blog updates:

Archives