X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
April 1, 2019

Insertion sequences drive the emergence of a highly adapted human pathogen.

Pseudomonas aeruginosa is a highly adaptive opportunistic pathogen that can have serious health consequences in patients with lung disorders. Taxonomic outliers of P. aeruginosa of environmental origin have recently emerged as infectious for humans. Here, we present the first genome-wide analysis of an isolate that caused fatal haemorrhagic pneumonia. In two clones, CLJ1 and CLJ3, sequentially recovered from a patient with chronic pulmonary disease, insertion of a mobile genetic element into the P. aeruginosa chromosome affected major virulence-associated phenotypes and led to increased resistance to the antibiotics used to combat the infection. Comparative genome, proteome and transcriptome analyses revealed that…

Read More »

January 1, 2019

Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.

Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our…

Read More »

January 1, 2019

Complete Sequence of a Novel Multidrug-Resistant Pseudomonas putida Strain Carrying Two Copies of qnrVC6.

This study aimed at identification and characterization of a novel multidrug-resistant Pseudomonas putida strain Guangzhou-Ppu420 carrying two copies of qnrVC6 isolated from a hospital in Guangzhou, China, in 2012. Antimicrobial susceptibility was tested by Vitek2™ Automated Susceptibility System and Etest™ strips, and whole-genome sequencing facilitated analysis of its multidrug resistance. The genome has a length of 6,031,212?bp and an average G?+?C content of 62.01%. A total of 5,421 open reading frames were identified, including eight 5S rRNA, seven 16S rRNA, and seven 23S rRNA, and 76 tRNA genes. Importantly, two copies of qnrVC6 gene with three ISCR1 around, a blaVIM-2…

Read More »

November 1, 2018

Plasmid and chromosomal integration of four novel blaIMP-carrying transposons from Pseudomonas aeruginosa, Klebsiella pneumoniae and an Enterobacter sp.

To provide detailed genetic characterization of four novel blaIMP-carrying transposons from Pseudomonas aeruginosa, Klebsiella pneumoniae and an Enterobacter sp.P. aeruginosa 60512, K. pneumoniae 447, P. aeruginosa 12939 and Enterobacter sp. A1137 were subjected to genome sequencing. The complete nucleotide sequences of two plasmids (p60512-IMP from the 60512 isolate and p447-IMP from the 447 isolate) and two chromosomes (the 12939 and A1137 isolates) were determined, then a genomic comparison of p60512-IMP, p447-IMP and four novel blaIMP-carrying transposons (Tn6394, Tn6375, Tn6411 and Tn6397) with related sequences was performed. Transferability of the blaIMP gene and bacterial antimicrobial susceptibility were tested.Tn6394 and Tn6375 were…

Read More »

September 1, 2018

Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of Rice Blast Fungus Magnaporthe oryzae.

Pseudomonas is a Gram-negative, rod-shaped bacteria. Many members of this genus displayed remarkable physiological and metabolic activity against different plant pathogens. However, Pseudomonas mosselii has not yet been characterized in biocontrol against plant disease. Here we isolated a strain of P. mosselii BS011 from the rhizosphere soil of rice plants, and the isolate showed strong inhibitory activity against the rice blast fungus Magnaporthe oryzae. Further we sequenced the complete genome of BS011, which consist of 5.75?Mb with a circular chromosome, 5,170 protein-coding genes, 23 rRNA and 78 tRNA operons. Bioinformatic analysis revealed that seven gene clusters may be involved in…

Read More »

August 1, 2018

Chromosomally encoded mcr-5 in colistin non-susceptible Pseudomonas aeruginosa.

Whole genome sequencing (WGS) of historical Pseudomonas aeruginosa clinical isolates identified a chromosomal copy of mcr-5 within a Tn3-like transposon in P. aeruginosa MRSN 12280. The isolate was non-susceptible to colistin by broth microdilution and genome analysis revealed no mutations known to confer colistin resistance. To the best of our knowledge, this is the first report of mcr in colistin non-susceptible P. aeruginosa.

Read More »

August 1, 2018

Complete genome sequence of Pseudomonas aeruginosa K34-7, a carbapenem-resistant isolate of the high-risk sequence type 233.

Carbapenem-resistant Pseudomonas aeruginosa is defined as a textquotedblleftcriticaltextquotedblright priority pathogen for the development of new antibiotics. Here we report the complete genome sequence of an extensively drug-resistant, Verona integron-encoded metallo-ß-lactamase-expressing isolate belonging to the high-risk sequence type 233.

Read More »

July 19, 2018

Comparison between complete genomes of an isolate of Pseudomonas syringae pv. actinidiae from Japan and a New Zealand isolate of the pandemic.

The modern pandemic of the bacterial kiwifruit pathogen Pseudomonas syringae pv actinidiae (Psa) is caused by a particular Psa lineage. To better understand the genetic basis of the virulence of this lineage, we compare the completely assembled genome of a pandemic New Zealand strain with that of the Psa type strain first isolated in Japan in 1983. Aligning the two genomes shows numerous translocations, constrained so as to retain the appropriate orientation of the Architecture Imparting Sequences (AIMs). There are several large horizontally acquired regions, some of which include Type I, Type II or Type III restriction systems. The activity…

Read More »

July 1, 2018

Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa.

Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly,…

Read More »

July 1, 2018

Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium).

Genome-wide analyses of the effector- and toxin-encoding genes were used to examine the phylogenetics and evolution of pathogenicity amongst diverse strains of Pseudomonas syringae causing bacterial canker of cherry (Prunus avium), including pathovars P. syringae pv morsprunorum (Psm) races 1 and 2, P. syringae pv syringae (Pss) and P. syringae pv avii. Phylogenetic analyses revealed Psm races and P. syringae pv avii clades were distinct and were each monophyletic, whereas cherry-pathogenic strains of Pss were interspersed amongst strains from other host species. A maximum likelihood approach was used to predict effectors associated with pathogenicity on cherry. Pss possesses a smaller repertoire of type III…

Read More »

June 22, 2018

Co-culture of soil biofilm isolates enables the discovery of novel antibiotics

Bacterial natural products (NPs) are considered to be a promising source of drug discovery. However, the biosynthesis gene clusters (BGCs) of NP are not often expressed, making it difficult to identify them. Recently, the study of biofilm community showed bacteria may gain competitive advantages by the secretion of antibiotics, implying a possible way to screen antibiotic by evaluating the social behavior of bacteria. In this study, we have described an efficient workflow for novel antibiotic discovery by employing the bacterial social interaction strategy with biofilm cultivation, co-culture, transcriptomic and genomic methods. We showed that a biofilm dominant species, i.e. Pseudomonas…

Read More »

June 1, 2018

Genome-based evolutionary history of Pseudomonas spp.

Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in…

Read More »

May 31, 2018

Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICE Tn4371 6385

Pseudomonas aeruginosa can cause life-threatening infections in immunocompromised patients. The first-line agents to treat P. aeruginosa infections are carbapenems. However, the emergence of carbapenem-resistant P. aeruginosa strains greatly compromised the effec- tiveness of carbapenem treatment, which makes the surveillance on their spreading and transmission important. Here we characterized the full-length genomes of two carbapenem- resistant P. aeruginosa clinical isolates that are capable of producing New Delhi metallo-ß- lactamase-1 (NDM-1). We show that blaNDM-1 is carried by a novel integrative and conjugative element (ICE) ICETn43716385, which also carries the macrolide resistance gene msr(E) and the florfenicol resistance gene floR. By exogenously…

Read More »

May 1, 2018

Genome sequence of Pseudomonas chlororaphis Lzh-T5, a plant growth-promoting rhizobacterium with antimicrobial activity.

Pseudomonas chlororaphis Lzh-T5 is a plant growth-promoting rhizobacterium (PGPR) with antimicrobial activity isolated from tomato rhizosphere in the city of Dezhou, Shandong Province, China. Here, the draft genome sequence of P. chlororaphis Lzh-T5 is reported, and several functional genes related to antifungal antibiotics and siderophore biosynthesis have been found in the genome. Copyright © 2018 Li et al.

Read More »

May 1, 2018

Unexpected diversity in the mobilome of a Pseudomonas aeruginosa strain isolated from a dental unit waterline revealed by SMRT Sequencing.

The Gram-negative bacterium Pseudomonas aeruginosa is found in several habitats, both natural and human-made, and is particularly known for its recurrent presence as a pathogen in the lungs of patients suffering from cystic fibrosis, a genetic disease. Given its clinical importance, several major studies have investigated the genomic adaptation of P. aeruginosa in lungs and its transition as acute infections become chronic. However, our knowledge about the diversity and adaptation of the P. aeruginosa genome to non-clinical environments is still fragmentary, in part due to the lack of accurate reference genomes of strains from the numerous environments colonized by the…

Read More »

1 2 3 9

Subscribe for blog updates:

Archives