July 19, 2019  |  

Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing.

Global yields of potato and tomato crops have fallen owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, many wild potato relatives show variation for resistance and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine resistance (R) gene sequence capture (RenSeq) with single-molecule real-time (SMRT) sequencing (SMRT RenSeq) to clone Rpi-amr3i. This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSeq can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops.


July 7, 2019  |  

Genomes of ‘Candidatus Liberibacter solanacearum’ Haplotype A from New Zealand and the United States Suggest Significant Genome Plasticity in the Species.

‘Candidatus Liberibacter solanacearum’ contains two solanaceous crop-infecting haplotypes, A and B. Two haplotype A draft genomes were assembled and compared with ZC1 (haplotype B), revealing inversion and relocation genomic rearrangements, numerous single-nucleotide polymorphisms, and differences in phage-related regions. Differences in prophage location and sequence were seen both within and between haplotype comparisons. OrthoMCL and BLAST analyses identified 46 putative coding sequences present in haplotype A that were not present in haplotype B. Thirty-eight of these loci were not found in sequences from other Liberibacter spp. Quantitative polymerase chain reaction (qPCR) assays designed to amplify sequences from 15 of these loci were screened against a panel of ‘Ca. L. solanacearum’-positive samples to investigate genetic diversity. Seven of the assays demonstrated within-haplotype diversity; five failed to amplify loci in at least one haplotype A sample while three assays produced amplicons from some haplotype B samples. Eight of the loci assays showed consistent A-B differentiation. Differences in genome arrangements, prophage, and qPCR results suggesting locus diversity within the haplotypes provide more evidence for genetic complexity in this emerging bacterial species.


July 7, 2019  |  

Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani.

Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution.We combined Illumina and PacBio technologies to complete the genome sequence of D. solani strain 3337 that was used as a reference to compare with 19 other genomes (including that of the type strain IPO2222(T)) which were generated by Illumina technology. This population genomic analysis highlighted an unexpected variability among D. solani isolates since it led to the characterization of two distinct sub-groups within the D. solani species. This approach also revealed different types of variations such as scattered SNP/InDel variations as well as replacing and additive horizontal gene transfers (HGT). Infra-species (between the two D. solani sub-groups) and inter-species (between D. solani and D. dianthicola) replacing HGTs were observed. Finally, this work pointed that genetic and functional variation in the motility trait could contribute to aggressiveness variability in D. solani.This work revealed that D. solani genomic variability may be caused by SNPs/InDels as well as replacing and additive HGT events, including plasmid acquisition; hence the D. solani genomes are more dynamic than that were previously proposed. This work alerts on precautions in molecular diagnosis of this emerging pathogen.


July 7, 2019  |  

Complete genome sequence of Pseudomonas brassicacearum strain L13-6-12, a biological control agent from the rhizosphere of potato

Pseudomonas brassicacearum strain L13-6-12 is a rhizosphere colonizer of potato, lettuce and sugar beet. Previous studies have shown that this motile, Gram-negative, non-sporulating bacterium is an effective biocontrol agent against different phytopathogens. Here, we announce and describe the complete genome sequence of P. brassicacearum L13-6-12 consisting of a single 6.7 Mb circular chromosome that consists of 5773 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes encoding specialized functions for pathogen suppression, thriving in the rhizosphere and interacting with eukaryotic organisms.


July 7, 2019  |  

Genome sequence-based marker development and genotyping in potato

Potato (Solanum tuberosum L.) is one of the world’s most economically important food crops and holds major significance for future food security. Despite its importance, the study of potato genetics and breeding has lagged behind mainly due to its polyploid genome and high levels of heterozygosity. Conventional marker and genotyping approaches have been helpful in progressing potato genetic research but have also had limitations in exploiting the outcome from these studies for gene discovery and applied research applications. The sequencing of the potato genome, followed by advancements in marker and genotyping technologies, has brought a step change in the way potato genetic studies are conducted. Potato is now amenable to modern sequence-based marker and genotyping methods with their increased ability to put thousands of markers on any population of interest without a priori knowledge. This has increased the precision and resolution of genetic studies previously not feasible in potato. A diverse range of fixed and flexible genotyping platforms, for a wide variety of research and breeding applications, are now available. Concerted research efforts are now needed to screen the available genetic diversity for this important crop to identify novel and beneficial trait alleles in order to enable efficient and precise introgression breeding permitting breeding of climate smart, and resilient, potato cultivars. This chapter provides an overview of sequence-based marker development and genotyping methods along with their implications for potato research and breeding in the post-genomics era.


July 7, 2019  |  

Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031.

Ralstonia solanacearum is the causative agent of bacterial wilt of potato. Ralstonia solanacearum strain UY031 belongs to the American phylotype IIB, sequevar 1, also classified as race 3 biovar 2. Here we report the completely sequenced genome of this strain, the first complete genome for phylotype IIB, sequevar 1, and the fourth for the R. solanacearum species complex. In addition to standard genome annotation, we have carried out a curated annotation of type III effector genes, an important pathogenicity-related class of genes for this organism. We identified 60 effector genes, and observed that this effector repertoire is distinct when compared to those from other phylotype IIB strains. Eleven of the effectors appear to be nonfunctional due to disruptive mutations. We also report a methylome analysis of this genome, the first for a R. solanacearum strain. This analysis helped us note the presence of a toxin gene within a region of probable phage origin, raising the hypothesis that this gene may play a role in this strain’s virulence.


July 7, 2019  |  

The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties.

The potato late blight resistance gene R8 has been cloned. R8 is found in five late blight resistant varieties deployed in three different continents. R8 recognises Avr8 and is homologous to the NB-LRR protein Sw-5 from tomato. The broad spectrum late blight resistance gene R8 from Solanum demissum was cloned based on a previously published coarse map position on the lower arm of chromosome IX. Fine mapping in a recombinant population and bacterial artificial chromosome (BAC) library screening resulted in a BAC contig spanning 170 kb of the R8 haplotype. Sequencing revealed a cluster of at least ten R gene analogues (RGAs). The seven RGAs in the genetic window were subcloned for complementation analysis. Only one RGA provided late blight resistance and caused recognition of Avr8. From these results, it was concluded that the newly cloned resistance gene was indeed R8. R8 encodes a typical intracellular immune receptor with an N-terminal coiled coil, a central nucleotide binding site and 13 C-terminal leucine rich repeats. Phylogenetic analysis of a set of representative Solanaceae R proteins shows that R8 resides in a clearly distinct clade together with the Sw-5 tospovirus R protein from tomato. It was found that the R8 gene is present in late blight resistant potato varieties from Europe (Sarpo Mira), USA (Jacqueline Lee, Missaukee) and China (PB-06, S-60). Indeed, when tested under field conditions, R8 transgenic potato plants showed broad spectrum resistance to the current late blight population in the Netherlands, similar to Sarpo Mira.


July 7, 2019  |  

Complete genome anatomy of the emerging potato pathogen Dickeya solani type strain IPO 2222(T).

Several species of the genus Dickeya provoke soft rot and blackleg diseases on a wide range of plants and crops. Dickeya solani has been identified as the causative agent of diseases outbreaks on potato culture in Europe for the last decade. Here, we report the complete genome of the D. solani IPO 2222(T). Using PacBio and Illumina technologies, a unique circular chromosome of 4,919,833 bp was assembled. The G?+?C content reaches 56% and the genomic sequence contains 4,059 predicted proteins. The ANI values calculated for D. solani IPO 2222(T) vs. other available D. solani genomes was over 99.9% indicating a high genetic homogeneity within D. solani species.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.