July 19, 2019  |  

The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum.

Common bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall haploid size of more than 15 billion bases. Multiple past attempts to assemble the genome have produced assemblies that were well short of the estimated genome size. Here we report the first near-complete assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15 344 693 583 bases and has a weighted average (N50) contig size of 232 659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4 179 762 575 bp of T. aestivum that correspond to its D genome components.© The Author 2017. Published by Oxford University Press.

July 7, 2019  |  

Next-generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing.

Difficulties in generating nuclear data for polyploids have impeded phylogenetic study of these groups. We describe a high-throughput protocol and an associated bioinformatics pipeline (Pipeline for Untangling Reticulate Complexes (Purc)) that is able to generate these data quickly and conveniently, and demonstrate its efficacy on accessions from the fern family Cystopteridaceae. We conclude with a demonstration of the downstream utility of these data by inferring a multi-labeled species tree for a subset of our accessions. We amplified four c. 1-kb-long nuclear loci and sequenced them in a parallel-tagged amplicon sequencing approach using the PacBio platform. Purc infers the final sequences from the raw reads via an iterative approach that corrects PCR and sequencing errors and removes PCR-mediated recombinant sequences (chimeras). We generated data for all gene copies (homeologs, paralogs, and segregating alleles) present in each of three sets of 50 mostly polyploid accessions, for four loci, in three PacBio runs (one run per set). From the raw sequencing reads, Purc was able to accurately infer the underlying sequences. This approach makes it easy and economical to study the phylogenetics of polyploids, and, in conjunction with recent analytical advances, facilitates investigation of broad patterns of polyploid evolution.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

July 7, 2019  |  

Genomic innovation for crop improvement.

Crop production needs to increase to secure future food supplies, while reducing its impact on ecosystems. Detailed characterization of plant genomes and genetic diversity is crucial for meeting these challenges. Advances in genome sequencing and assembly are being used to access the large and complex genomes of crops and their wild relatives. These have helped to identify a wide spectrum of genetic variation and permitted the association of genetic diversity with diverse agronomic phenotypes. In combination with improved and automated phenotyping assays and functional genomic studies, genomics is providing new foundations for crop-breeding systems.

July 7, 2019  |  

Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length?>2.6?Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes.© The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

July 7, 2019  |  

Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics.

Compared to diploid species, allopolyploid crop species possess more complex genomes, higher productivity, and greater adaptability to changing environments. Next generation sequencing techniques have produced high-density genetic maps, whole genome sequences, transcriptomes and epigenomes for important polyploid crops. However, several problems interfere with the full application of next generation sequencing techniques to these crops. Firstly, different types of genomic variation affect sequence assembly and QTL mapping. Secondly, duplicated or homoeologous genes can diverge in function and then lead to emergence of many minor QTL, which increases difficulties in fine mapping, cloning and marker assisted selection. Thirdly, repetitive DNA sequences arising in polyploid crop genomes also impact sequence assembly, and are increasingly being shown to produce small RNAs to regulate gene expression and hence phenotypic traits. We propose that these three key features should be considered together when analyzing polyploid crop genomes. It is apparent that dissection of genomic structural variation, elucidation of the function and mechanism of interaction of homoeologous genes, and investigation of the de novo roles of repeat sequences in agronomic traits are necessary for genomics-based crop breeding in polyploids. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.