Menu
July 7, 2019  |  

Salmonella enterica serovar Enteritidis strains recovered from human clinical cases between 1949 and 1995 in the United States.

Salmonella enterica serovar Enteritidis is one of the most commonly isolated foodborne pathogens and is transmitted primarily to humans through consumption of contaminated poultry and poultry products. We are reporting completely closed genome and plasmid sequences of historical S. Enteritidis isolates recovered from humans between 1949 and 1995 in the United States.


July 7, 2019  |  

Complete genome sequence of Lactococcus lactis subsp. lactis G50 with immunostimulating activity, isolated from Napier grass.

Lactococcus lactis subsp. lactis G50 is a strain with immunostimulating activity, isolated from Napier grass (Pennisetum purpureum). We determined the complete genome sequence of this strain using the PacBio RS II platform. The single circular chromosome consists of 2,346,663?bp, with 35.03% G+C content and no plasmids. Copyright © 2018 Nakano et al.


July 7, 2019  |  

High-quality complete genome sequences of three bovine Shiga toxin-producing Escherichia coli O177:H- (fliCH25) isolates harboring virulent stx2 and multiple plasmids.

Shiga toxin-producingEscherichia coli(STEC) bacteria are zoonotic pathogens. We report here the high-quality complete genome sequences of three STEC O177:H- (fliCH25) strains, SMN152SH1, SMN013SH2, and SMN197SH3. The assembled genomes consisted of one optical map-verified circular chromosome for each strain, plus two plasmids for SMN013SH2 and three plasmids for SMN152SH1 and SMN197SH3, respectively. Copyright © 2018 Sheng et al.


July 7, 2019  |  

Genome sequence of Galleria mellonella(greater wax moth).

The larvae of the greater wax moth,Galleria mellonella, are pests of active beehives. In infection biology, these larvae are playing a more and more attractive role as an invertebrate host model. Here, we report on the first genome sequence ofGalleria mellonella. Copyright © 2018 Lange et al.


July 7, 2019  |  

Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43.

Alternaria brassicicola causes dark spot (or black spot) disease, which is one of the most common and destructive fungal diseases of Brassicaceae spp. worldwide. Here, we report the draft genome sequence of strain Abra43. The assembly comprises 29 scaffolds, with an N50 value of 2.1 Mb. The assembled genome was 31,036,461 bp in length, with a G+C content of 50.85%.


July 7, 2019  |  

A comprehensive model of DNA fragmentation for the preservation of High Molecular Weight DNA

During DNA extraction the DNA molecule undergoes physical and chemical shearing, causing the DNA to fragment into shorter and shorter pieces. Under common laboratory conditions this fragmentation yields DNA fragments of 5-35 kilobases (kb) in length. This fragment length is more than sufficient for DNA sequencing using short-read technologies which generate reads 50-600 bp in length, but insufficient for long-read sequencing and linked reads where fragment lengths of more than 40 kb may be desirable. This study provides a theoretical framework for quality management to ensure access to high molecular weight DNA in samples. Shearing can be divided into physical and chemical shearing which generate different patterns of fragmentation. Exposure to physical shearing creates a characteristic fragment length where DNA fragments are cut in half by shear stress. This characteristic length can be measured using gel electrophoresis or instruments for DNA fragment analysis. Chemical shearing generates randomly distributed fragment lengths visible as a smear of DNA below the peak fragment length. By measuring the peak of DNA fragment length and the proportion of very short DNA fragments both sources of shearing can be measured using commonly used laboratory techniques, providing a suitable quantification of DNA integrity of DNA for sequencing with long-read technologies.


July 7, 2019  |  

Ten steps to get started in Genome Assembly and Annotation.

As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR).


July 7, 2019  |  

Development of molecular markers linked to powdery mildew resistance GenePm4bby combining SNP discovery from transcriptome sequencing data with bulked segregant analysis (BSR-Seq) in wheat.

Powdery mildew resistance genePm4b, originating fromTriticum persicum, is effective against the prevalentBlumeria graminisf. sp.tritici(Bgt) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification ofPm4bduring the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F2:3mapping population (237 families) derived from a pair of isogenic lines VPM1/7*Bainong 3217 F4(carryingPm4b) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F2:3families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. FourPm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking thePm4bgene. Three SSR markers,Xics13,Xics43, andXics76, were incorporated in the new genetic linkage map, which locatedPm4bin a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship withBrachypodium distachyonchromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification ofPm4bduring its MAS practice.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.