Menu
July 7, 2019  |  

Exploiting next-generation sequencing to solve the haplotyping puzzle in polyploids: a simulation study.

Haplotypes are the units of inheritance in an organism, and many genetic analyses depend on their precise determination. Methods for haplotyping single individuals use the phasing information available in next-generation sequencing reads, by matching overlapping single-nucleotide polymorphisms while penalizing post hoc nucleotide corrections made. Haplotyping diploids is relatively easy, but the complexity of the problem increases drastically for polyploid genomes, which are found in both model organisms and in economically relevant plant and animal species. Although a number of tools are available for haplotyping polyploids, the effects of the genomic makeup and the sequencing strategy followed on the accuracy of these methods have hitherto not been thoroughly evaluated.We developed the simulation pipeline haplosim to evaluate the performance of three haplotype estimation algorithms for polyploids: HapCompass, HapTree and SDhaP, in settings varying in sequencing approach, ploidy levels and genomic diversity, using tetraploid potato as the model. Our results show that sequencing depth is the major determinant of haplotype estimation quality, that 1?kb PacBio circular consensus sequencing reads and Illumina reads with large insert-sizes are competitive and that all methods fail to produce good haplotypes when ploidy levels increase. Comparing the three methods, HapTree produces the most accurate estimates, but also consumes the most resources. There is clearly room for improvement in polyploid haplotyping algorithms.


July 7, 2019  |  

Complete genome sequence of Marivivens sp. JLT3646, a potential aromatic compound degrader

Marivivens sp. JLT3646 (CGMCC 1.15778), belonging to the phylum Alphaproteobacteria, was isolated from seawater, Kueishan Islet, offshore northeast of Taiwan. Here, we present the complete genome sequence of Marivivens sp. JLT3646, which contains a circular 2,978,145 bp chromosome with 56.2% G + C content, and one circular plasmid which is 169,066 bp in length. The genome data suggested that Marivivens sp. JLT3646 has the potential to degrade aromatic monomers, which might provide insight into biotechnological applications and facilitate the investigation of environmental bioremediation.


July 7, 2019  |  

Genomic insights into Photobacterium damselae subsp. damselae strain KC-Na-1, isolated from the finless porpoise (Neophocaena asiaeorientalis)

Photobacterium damselae subsp. damselae (PDD) is a marine bacterium that can infect a variety of marine animals and humans. Although this bacterium has been isolated from several stranded dolphins and whales, its pathogenic role in cetaceans is still unclear. In this study, we report the complete genome of PDD strain KC-Na-1 isolated from a finless porpoise (Neophocaena asiaeorientalis) rescued from the South Sea (Republic of Korea). The sequenced genome comprised two chromosomes and four plasmids. Among the recently identified major virulence factors in PDD, only phospholipase (plpV) was found in strain KC-Na-1. Interestingly, two genes homologous to Vibrio thermostable direct hemolysin (tdh) and its transcriptional regulator toxR, which are known virulence factors associated with Vibrio parahaemolyticus, were encoded on the plasmid pPDD-Na-1-3. Based on these results, strain KC-Na-1 may have potential pathogenicity in humans and other marine animals and also could act as a potential virulent strain. To the best of our knowledge, this is the first report of the complete genome sequence of P. damselae.


July 7, 2019  |  

New high copy tandem repeat in the content of the chicken W chromosome.

The content of repetitive DNA in avian genomes is considerably less than in other investigated vertebrates. The first descriptions of tandem repeats were based on the results of routine biochemical and molecular biological experiments. Both satellite DNA and interspersed repetitive elements were annotated using library-based approach and de novo repeat identification in assembled genome. The development of deep-sequencing methods provides datasets of high quality without preassembly allowing one to annotate repetitive elements from unassembled part of genomes. In this work, we search the chicken assembly and annotate high copy number tandem repeats from unassembled short raw reads. Tandem repeat (GGAAA)n has been identified and found to be the second after telomeric repeat (TTAGGG)n most abundant in the chicken genome. Furthermore, (GGAAA)n repeat forms expanded arrays on the both arms of the chicken W chromosome. Our results highlight the complexity of repetitive sequences and update data about organization of sex W chromosome in chicken.


July 7, 2019  |  

Whole-genome sequence of Mycoplasma bovis strain Ningxia-1.

A genome sequence of the Mycoplasma bovis Ningxia-1 strain was tested by Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing technology. The strain was isolated from a lesioned calf lung in 2013 in Pengyang, Ningxia, China. The single circular chromosome of 1,033,629 bp shows differences between complete Mycoplasma bovis genome in insertion-like sequences (ISs), integrative conjugative elements (ICEs), lipoproteins (LPs), variable surface lipoproteins (VSPs), pathogenicity islands (PAIs), etc. Copyright © 2018 Sun et al.


July 7, 2019  |  

RepLong: de novo repeat identification using long read sequencing data.

The identification of repetitive elements is important in genome assembly and phylogenetic analyses. The existing de novo repeat identification methods exploiting the use of short reads are impotent in identifying long repeats. Since long reads are more likely to cover repeat regions completely, using long reads is more favorable for recognizing long repeats.In this study, we propose a novel de novo repeat elements identification method namely RepLong based on PacBio long reads. Given that the reads mapped to the repeat regions are highly overlapped with each other, the identification of repeat elements is equivalent to the discovery of consensus overlaps between reads, which can be further cast into a community detection problem in the network of read overlaps. In RepLong, we first construct a network of read overlaps based on pair-wise alignment of the reads, where each vertex indicates a read and an edge indicates a substantial overlap between the corresponding two reads. Secondly, the communities whose intra connectivity is greater than the inter connectivity are extracted based on network modularity optimization. Finally, representative reads in each community are extracted to form the repeat library. Comparison studies on Drosophila melanogaster and human long read sequencing data with genome-based and short-read-based methods demonstrate the efficiency of RepLong in identifying long repeats. RepLong can handle lower coverage data and serve as a complementary solution to the existing methods to promote the repeat identification performance on long-read sequencing data.The software of RepLong is freely available at https://github.com/ruiguo-bio/replong.ywsun@szu.edu.cn or zhuzx@szu.edu.cn.Supplementary data are available at Bioinformatics online.


July 7, 2019  |  

Recent progress and prospects for advancing arachnid genomics

Arachnids exhibit tremendous species richness and adaptations of biomedical, industrial, and agricultural importance. Yet genomic resources for arachnids are limited, with the first few spider and scorpion genomes becoming accessible in the last four years. We review key insights from these genome projects, and recommend additional genomes for sequencing, emphasizing taxa of greatest value to the scientific community. We suggest greater sampling of spiders whose genomes are understudied but hold important protein recipes for silk and venom production. We further recommend arachnid genomes to address significant evolutionary topics, including the phenotypic impact of genome duplications. A barrier to high-quality arachnid genomes are assemblies based solely on short-read data, which may be overcome by long-range sequencing and other emerging methods.


July 7, 2019  |  

Lepidoptera genomes: current knowledge, gaps and future directions.

Butterflies and moths (Lepidoptera) are one of the most ecologically diverse and speciose insect orders. With recent advances in genomics, new Lepidoptera genomes are regularly being sequenced, and many of them are playing principal roles in genomics studies, particularly in the fields of phylo-genomics and functional genomics. Thus far, assembled genomes are only available for <10 of the 43 Lepidoptera superfamilies. Nearly all are model species, found in the speciose clade Ditrysia. Community support for Lepidoptera genomics is growing with successful management and dissemination of data and analytical tools in centralized databases. With genomic studies quickly becoming integrated with ecological and evolutionary research, the Lepidoptera community will unquestionably benefit from new high-quality reference genomes that are more evenly distributed throughout the order. Copyright © 2018 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Construction of two whole genome radiation hybrid panels for dromedary (Camelus dromedarius): 5000RAD and 15000RAD.

The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RADand 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RADpanel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RADpanel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RADpanel is an important high-resolution complement to the main 5000RADpanel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools.


July 7, 2019  |  

Current advances in genome sequencing of common wheat and its ancestral species

Common wheat is an important and widely cultivated food crop throughout the world. Much progress has been made in regard to wheat genome sequencing in the last decade. Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.


July 7, 2019  |  

Inferring synteny between genome assemblies: a systematic evaluation.

Genome assemblies across all domains of life are being produced routinely. Initial analysis of a new genome usually includes annotation and comparative genomics. Synteny provides a framework in which conservation of homologous genes and gene order is identified between genomes of different species. The availability of human and mouse genomes paved the way for algorithm development in large-scale synteny mapping, which eventually became an integral part of comparative genomics. Synteny analysis is regularly performed on assembled sequences that are fragmented, neglecting the fact that most methods were developed using complete genomes. It is unknown to what extent draft assemblies lead to errors in such analysis.We fragmented genome assemblies of model nematodes to various extents and conducted synteny identification and downstream analysis. We first show that synteny between species can be underestimated up to 40% and find disagreements between popular tools that infer synteny blocks. This inconsistency and further demonstration of erroneous gene ontology enrichment tests raise questions about the robustness of previous synteny analysis when gold standard genome sequences remain limited. In addition, assembly scaffolding using a reference guided approach with a closely related species may result in chimeric scaffolds with inflated assembly metrics if a true evolutionary relationship was overlooked. Annotation quality, however, has minimal effect on synteny if the assembled genome is highly contiguous.Our results show that a minimum N50 of 1 Mb is required for robust downstream synteny analysis, which emphasizes the importance of gold standard genomes to the science community, and should be achieved given the current progress in sequencing technology.


July 7, 2019  |  

Completed genome sequences of strains from 36 serotypes of Salmonella.

We report here the completed closed genome sequences of strains representing 36 serotypes of Salmonella. These genome sequences will provide useful references for understanding the genetic variation between serotypes, particularly as references for mapping of raw reads or to create assemblies of higher quality, as well as to aid in studies of comparative genomics of Salmonella.© Crown copyright 2018.


July 7, 2019  |  

Complete genome sequence of Lacinutrix venerupis DOK2-8 isolated from marine sediment from the East Sea, Republic of Korea.

Lacinutrix venerupis has recently been considered a potential fish pathogen. Here, we report the complete genome sequence of L. venerupis DOK2-8, which possesses several virulence-related genes. This strain may be potentially virulent to other marine organisms, and its genomic information will provide important insights into the biodiversity of the genus Lacinutrix. Copyright © 2018 Lim et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.