Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
April 1, 2019

Persistence of Moraxella catarrhalis in Chronic Obstructive Pulmonary Disease and Regulation of the Hag/MID Adhesin.

Persistence of bacterial pathogens in the airways has profound consequences on the course and pathogenesis of chronic obstructive pulmonary disease (COPD). Patients with COPD continuously acquire and clear strains of Moraxella catarrhalis, a major pathogen in COPD. Some strains are cleared quickly and some persist for months to years. The mechanism of the variability in duration of persistence is unknown. Guided by genome sequences of selected strains, we studied the expression of Hag/MID, hag/mid gene sequences, adherence to human cells, and autoaggregation in longitudinally collected strains of M. catarrhalis from adults with COPD. Twenty-eight of 30 cleared strains of M.…

Read More »

November 1, 2018

Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution.

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique…

Read More »

November 1, 2018

Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition.

Phase-variation of Type I restriction-modification systems can rapidly alter the sequence motifs they target, diversifying both the epigenetic patterns and endonuclease activity within clonally descended populations. Here, we characterize the Streptococcus pneumoniae SpnIV phase-variable Type I RMS, encoded by the translocating variable restriction (tvr) locus, to identify its target motifs, mechanism and regulation of phase variation, and effects on exchange of sequence through transformation. The specificity-determining hsdS genes were shuffled through a recombinase-mediated excision-reintegration mechanism involving circular intermediate molecules, guided by two types of direct repeat. The rate of rearrangements was limited by an attenuator and toxin-antitoxin system homologs that…

Read More »

August 1, 2018

Phasevarions of bacterial pathogens: Methylomics sheds new light on old enemies.

A wide variety of bacterial pathogens express phase-variable DNA methyltransferases that control expression of multiple genes via epigenetic mechanisms. These randomly switching regulons - phasevarions - regulate genes involved in pathogenesis, host adaptation, and antibiotic resistance. Individual phase-variable genes can be identified in silico as they contain easily recognized features such as simple sequence repeats (SSRs) or inverted repeats (IRs) that mediate the random switching of expression. Conversely, phasevarion-controlled genes do not contain any easily identifiable features. The study of DNA methyltransferase specificity using Single-Molecule, Real-Time (SMRT) sequencing and methylome analysis has rapidly advanced the analysis of phasevarions by allowing…

Read More »

July 17, 2017

Phase-variable methylation and epigenetic regulation by type I restriction-modification systems.

Epigenetic modifications in bacteria, such as DNA methylation, have been shown to affect gene regulation, thereby generating cells that are isogenic but with distinctly different phenotypes. Restriction-modification (RM) systems contain prototypic methylases that are responsible for much of bacterial DNA methylation. This review focuses on a distinctive group of type I RM loci that , through phase variation, can modify their methylation target specificity and can thereby switch bacteria between alternative patterns of DNA methylation. Phase variation occurs at the level of the target recognition domains of the hsdS (specificity) gene via reversible recombination processes acting upon multiple hsdS alleles.…

Read More »

September 1, 2016

Bacterial genetics: SMRT-seq reveals an epigenetic switch.

Streptococcus pneumoniae uses genetic diversification as a strategy to achieve phenotypic plasticity. For example, DNA inversion of the hsdS genes of type I restriction-modification (R-M) systems determines whether S. pneumoniae forms opaque or transparent colonies, which have different colonization and virulence characteristics. Zhang and colleagues now use single-molecule, real-time sequencing (SMRT-seq) to show the allelic variation of hsdS that results from site-specific recombination forms part of an epigenetic switch.

Read More »

June 1, 2016

Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168.

Phase-variable restriction-modification systems are a feature of a diverse range of bacterial species. Stochastic, reversible switches in expression of the methyltransferase produces variation in methylation of specific sequences. Phase-variable methylation by both Type I and Type III methyltransferases is associated with altered gene expression and phenotypic variation. One phase-variable gene of Campylobacter jejuni encodes a homologue of an unusual Type IIG restriction-modification system in which the endonuclease and methyltransferase are encoded by a single gene. Using both inhibition of restriction and PacBio-derived methylome analyses of mutants and phase-variants, the cj0031c allele in C. jejuni strain NCTC11168 was demonstrated to specifically…

Read More »

May 5, 2016

OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica.

Phase variation of the Salmonella enterica opvAB operon generates a bacterial lineage with standard lipopolysaccharide structure (OpvAB(OFF)) and a lineage with shorter O-antigen chains (OpvAB(ON)). Regulation of OpvAB lineage formation is transcriptional, and is controlled by the LysR-type factor OxyR and by DNA adenine methylation. The opvAB regulatory region contains four sites for OxyR binding (OBSA-D), and four methylatable GATC motifs (GATC1-4). OpvAB(OFF) and OpvAB(ON) cell lineages display opposite DNA methylation patterns in the opvAB regulatory region: (i) in the OpvAB(OFF) state, GATC1 and GATC3 are non-methylated, whereas GATC2 and GATC4 are methylated; (ii) in the OpvAB(ON) state, GATC2 and…

Read More »

April 12, 2016

Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli.

Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E.…

Read More »

December 11, 2015

DNA methylation assessed by SMRT Sequencing is linked to mutations in Neisseria meningitidis isolates.

The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest…

Read More »

October 1, 2015

Role of restriction-modification systems in prokaryotic evolution and ecology

Restriction–modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution…

Read More »

July 28, 2015

A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae.

Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear…

Read More »

April 6, 2015

Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N6-adenine DNA methyltransferases of Neisseria meningitidis.

Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N(6)-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N(6)-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5'-CGY M6A: G-3'), ModA12 (exemplified…

Read More »

September 2, 2014

ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media.

Moraxella catarrhalis is a significant cause of otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we characterize a phase-variable DNA methyltransferase (ModM), which contains 5'-CAAC-3' repeats in its open reading frame that mediate high-frequency mutation resulting in reversible on/off switching of ModM expression. Three modM alleles have been identified (modM1-3), with modM2 being the most commonly found allele. Using single-molecule, real-time (SMRT) genome sequencing and methylome analysis, we have determined that the ModM2 methylation target is 5'-GAR(m6)AC-3', and 100% of these sites are methylated in the genome of the M. catarrhalis 25239 ModM2 on strain. Proteomic analysis of…

Read More »

Subscribe for blog updates: