Menu
July 7, 2019

Variant review with the Integrative Genomics Viewer.

Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV’s variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR.©2017 American Association for Cancer Research.


July 7, 2019

New insights into the diversity of the genus Faecalibacterium.

Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium, but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium. For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii, which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated a values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii, but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.


July 7, 2019

Tools for annotation and comparison of structural variation.

The impact of structural variants (SVs) on a variety of organisms and diseases like cancer has become increasingly evident. Methods for SV detection when studying genomic differences across cells, individuals or populations are being actively developed. Currently, just a few methods are available to compare different SVs callsets, and no specialized methods are available to annotate SVs that account for the unique characteristics of these variant types. Here, we introduce SURVIVOR_ant, a tool that compares types and breakpoints for candidate SVs from different callsets and enables fast comparison of SVs to genomic features such as genes and repetitive regions, as well as to previously established SV datasets such as from the 1000 Genomes Project. As proof of concept we compared 16 SV callsets generated by different SV calling methods on a single genome, the Genome in a Bottle sample HG002 (Ashkenazi son), and annotated the SVs with gene annotations, 1000 Genomes Project SV calls, and four different types of repetitive regions. Computation time to annotate 134,528 SVs with 33,954 of annotations was 22 seconds on a laptop.


July 7, 2019

Interrogating the “unsequenceable” genomic trinucleotide repeat disorders by long-read sequencing.

Microsatellite expansion, such as trinucleotide repeat expansion (TRE), is known to cause a number of genetic diseases. Sanger sequencing and next-generation short-read sequencing are unable to interrogate TRE reliably. We developed a novel algorithm called RepeatHMM to estimate repeat counts from long-read sequencing data. Evaluation on simulation data, real amplicon sequencing data on two repeat expansion disorders, and whole-genome sequencing data generated by PacBio and Oxford Nanopore technologies showed superior performance over competing approaches. We concluded that long-read sequencing coupled with RepeatHMM can estimate repeat counts on microsatellites and can interrogate the “unsequenceable” genomic trinucleotide repeat disorders.


July 7, 2019

Hunting structural variants: Population by population

Until recently, most population-scale genome sequencing studies have focused on identifying single nucleotide variants (SNVs) to explore genetic differences between individuals. Like so many SNV-based genome-wide association studies, however, these efforts have had difficulty identifying causative genetic mechanisms underlying most complex functions. More and more, the genomics community has realised that structural variation is likely responsible for many of the traits and phenotypes that scientists have not been able to attribute to SNVs. This class of variants, defined as genetic differences of 50 bp or larger, accounts for most of the DNA sequence differences between any two people. Structural variants (SVs) are also already known to cause many common and rare diseases including ALS, schizophrenia, leukemia, Carney complex, and Huntington’s disease. Despite the importance of SVs, these larger variants have been understudied and underreported compared to their single-nucleotide counterparts. One reason is that they remain difficult to detect. Their length often means they cannot be fully spanned using short sequencing reads. They also often occur in highly repetitive or GC-rich regions of the genome, making them challenging targets. As such, this class of human genetic variation has remained vastly under-explored in global populations and is now ripe for discovery.


July 7, 2019

Convergence of plasmid architectures drives emergence of multi-drug resistance in a clonally diverse Escherichia coli population from a veterinary clinical care setting.

The purpose of this study was to determine the plasmid architecture and context of resistance genes in multi-drug resistant (MDR) Escherichia coli strains isolated from urinary tract infections in dogs. Illumina and single-molecule real-time (SMRT) sequencing were applied to assemble the complete genomes of E. coli strains associated with clinical urinary tract infections, which were either phenotypically MDR or drug susceptible. This revealed that multiple distinct families of plasmids were associated with building an MDR phenotype. Plasmid-mediated AmpC (CMY-2) beta-lactamase resistance was associated with a clonal group of IncI1 plasmids that has remained stable in isolates collected up to a decade apart. Other plasmids, in particular those with an IncF replicon type, contained other resistance gene markers, so that the emergence of these MDR strains was driven by the accumulation of multiple plasmids, up to 5 replicons in specific cases. This study indicates that vulnerable patients, often with complex clinical histories provide a setting leading to the emergence of MDR E. coli strains in clonally distinct commensal backgrounds. While it is known that horizontally-transferred resistance supplements uropathogenic strains of E. coli such as ST131, our study demonstrates that the selection of an MDR phenotype in commensal E. coli strains can result in opportunistic infections in vulnerable patient populations. These strains provide a reservoir for the onward transfer of resistance alleles into more typically pathogenic strains and provide opportunities for the coalition of resistance and virulence determinants on plasmids as evidenced by the IncF replicons characterised in this study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Pseudomonas corrugata strain RM1-1-4, a stress protecting agent from the rhizosphere of an oilseed rape bait plant

Pseudomonas corrugata strain RM1-1-4 is a rhizosphere colonizer of oilseed rape. A previous study has shown that this motile, Gram-negative, non-sporulating bacterium is an effective stress protecting and biocontrol agent, which protects their hosts against abiotic and biotic stresses. Here, we announce and describe the complete genome sequence of P. corrugata RM1-1-4 consisting of a single 6.1 Mb circular chromosome that encodes 5189 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes predicting functions such as detoxifying mechanisms, stress inhibitors, exoproteases, lipoproteins or volatile components as well as rhizobactin siderophores and spermidine. Further analysis of its genome will help to identify traits promising for stress protection, biocontrol and plant growth promotion properties.


July 7, 2019

Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (Microcebus murinus).

The de novo assembly of repeat-rich mammalian genomes using only high-throughput short read sequencing data typically results in highly fragmented genome assemblies that limit downstream applications. Here, we present an iterative approach to hybrid de novo genome assembly that incorporates datasets stemming from multiple genomic technologies and methods. We used this approach to improve the gray mouse lemur (Microcebus murinus) genome from early draft status to a near chromosome-scale assembly.We used a combination of advanced genomic technologies to iteratively resolve conflicts and super-scaffold the M. murinus genome.We improved the M. murinus genome assembly to a scaffold N50 of 93.32 Mb. Whole genome alignments between our primary super-scaffolds and 23 human chromosomes revealed patterns that are congruent with historical comparative cytogenetic data, thus demonstrating the accuracy of our de novo scaffolding approach and allowing assignment of scaffolds to M. murinus chromosomes. Moreover, we utilized our independent datasets to discover and characterize sequences associated with centromeres across the mouse lemur genome. Quality assessment of the final assembly found 96% of mouse lemur canonical transcripts nearly complete, comparable to other published high-quality reference genome assemblies.We describe a new assembly of the gray mouse lemur (Microcebus murinus) genome with chromosome-scale scaffolds produced using a hybrid bioinformatic and sequencing approach. The approach is cost effective and produces superior results based on metrics of contiguity and completeness. Our results show that emerging genomic technologies can be used in combination to characterize centromeres of non-model species and to produce accurate de novo chromosome-scale genome assemblies of complex mammalian genomes.


July 7, 2019

Complete genome sequence of Clostridium perfringens LLY_N11, a necrotic enteritis-inducing strain isolated from a healthy chicken intestine.

Clostridium perfringens strain LLY_N11, a commensal bacterium, which previously induced necrotic enteritis in an experimental study, was isolated from the intestine of a young healthy chicken. Here, we present the complete genome sequence of this strain, which may provide a better understanding of the molecular mechanisms involved in necrotic enteritis pathogenesis.


July 7, 2019

Evaluation of oritavancin dosing strategies against vancomycin-resistant Enterococcus faecium isolates with or without reduced susceptibility to daptomycin in an in vitro pharmacokinetic/pharmacodynamic model.

Clinical development of nonsusceptibility to the lipopeptide antibiotic daptomycin remains a serious concern during therapy for infections caused by vancomycin-resistant Enterococcus faecium (VREfm). The long-acting lipoglycopeptide oritavancin exhibits potent in vitro activity against VREfm although its safety and efficacy in treating clinical VREfm infections have not been established. In this study, novel dosing regimens of daptomycin and oritavancin were assessed against both VREfm and daptomycin-nonsusceptible VREfm isolates in an in vitro pharmacokinetic/pharmacodynamic model. Copyright © 2017 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.