Menu
July 7, 2019  |  

Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum.

The recently isolated strain L21-Fru-AB(T) represents moderately halophilic, obligately anaerobic and saccharolytic bacteria that thrive in the suboxic transition zones of hypersaline microbial mats. Phylogenetic analyses based on 16S rRNA genes, RpoB proteins and gene content indicated that strain L21-Fru-AB(T) represents a novel species and genus affiliated with a distinct phylum-level lineage originally designated Verrucomicrobia subdivision 5. A survey of environmental 16S rRNA gene sequences revealed that members of this newly recognized phylum are wide-spread and ecologically important in various anoxic environments ranging from hypersaline sediments to wastewater and the intestine of animals. Characteristic phenotypic traits of the novel strain included the formation of extracellular polymeric substances, a Gram-negative cell wall containing peptidoglycan and the absence of odd-numbered cellular fatty acids. Unusual metabolic features deduced from analysis of the genome sequence were the production of sucrose as osmoprotectant, an atypical glycolytic pathway lacking pyruvate kinase and the synthesis of isoprenoids via mevalonate. On the basis of the analyses of phenotypic, genomic and environmental data, it is proposed that strain L21-Fru-AB(T) and related bacteria are specifically adapted to the utilization of sulfated glycopolymers produced in microbial mats or biofilms.


July 7, 2019  |  

Ploidy influences the functional attributes of de novo lager yeast hybrids.

The genomes of hybrid organisms, such as lager yeast (Saccharomyces cerevisiae × Saccharomyces eubayanus), contain orthologous genes, the functionality and effect of which may differ depending on their origin and copy number. How the parental subgenomes in lager yeast contribute to important phenotypic traits such as fermentation performance, aroma production, and stress tolerance remains poorly understood. Here, three de novo lager yeast hybrids with different ploidy levels (allodiploid, allotriploid, and allotetraploid) were generated through hybridization techniques without genetic modification. The hybrids were characterized in fermentations of both high gravity wort (15 °P) and very high gravity wort (25 °P), which were monitored for aroma compound and sugar concentrations. The hybrid strains with higher DNA content performed better during fermentation and produced higher concentrations of flavor-active esters in both worts. The hybrid strains also outperformed both the parent strains. Genome sequencing revealed that several genes related to the formation of flavor-active esters (ATF1, ATF2¸ EHT1, EEB1, and BAT1) were present in higher copy numbers in the higher ploidy hybrid strains. A direct relationship between gene copy number and transcript level was also observed. The measured ester concentrations and transcript levels also suggest that the functionality of the S. cerevisiae- and S. eubayanus-derived gene products differs. The results contribute to our understanding of the complex molecular mechanisms that determine phenotypes in lager yeast hybrids and are expected to facilitate targeted strain development through interspecific hybridization.


July 7, 2019  |  

Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by (13)C metabolic flux analysis and whole genome sequencing.

We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Vibrio alginolyticus ATCC 33787(T) isolated from seawater with three native megaplasmids.

Vibrio alginolyticus, an opportunistic pathogen, is commonly associated with vibriosis in fish and shellfish and can also cause superficial and ear infections in humans. V. alginolyticus ATCC 33787(T) was originally isolated from seawater and has been used as one of the type strains for exploring the virulence factors of marine bacteria and for developing vaccine against vibriosis. Here we sequenced and assembled the whole genome of this strain, and identified three megaplasmids and three Type VI secretion systems, thus providing useful information for the study of virulence factors and for the development of vaccine for Vibrio. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of the crude oil-degrading thermophilic bacterium Geobacillus sp. JS12.

Here, we report the complete genome sequence of Geobacillus sp. JS12, isolated from composts located in Namhae, Korea, which shows extracellular lipolytic activities at high temperatures. An array of genes related to the utilization of lipids was identified by whole genome analysis. The genome sequence of the strain JS12 provides basic information for wider exploitation of thermostable industrial lipases. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry.

Eight isolates of Gram-negative fluorescent bacteria (58(T), 122, 374, 791, 963, 966, 970a and 1021) were obtained from diseased tissue of cherry trees from different regions of Poland. The symptoms resembled those of bacterial canker. Based on an analysis of 16S rDNA sequences the isolates shared the highest over 99.9% similarity with Pseudomonas ficuserectae JCM 2400(T) and P. congelans DSM 14939(T). Phylogenetic analysis using housekeeping genes gyrB, rpoD and rpoB revealed that they form a separate cluster and confirmed their closest relation to P. syringae NCPPB 281(T) and P. congelans LMG 21466(T). DNA-DNA hybridization between the cherry isolate 58(T) and the type strains of these two closely related species revealed relatedness values of 58.2% and 41.9%, respectively. This was further supported by Average Nucleotide Identity (ANIb) and Genome-to-Genome Distance (GGDC) between the whole genome sequences of strain LMG 28609(T) and closely related Pseudomonas species. The major cellular fatty acids are 16:0 and summed feature 3 (16:1 ?7c/15:0 iso 2OH). Phenotypic characteristics differentiated the novel isolates from other closely related species. The G+C content of the genomic DNA of strain 58(T) was 59%. The diversity was proved by PCR MP and BOX PCR, eliminating the possibility that they constitute a clonal population. Based on the evidence of this polyphasic taxonomic study the eight strains are considered to represent a novel species of the genus Pseudomonas for which the name P. cerasi sp. nov. (non Griffin, 1911) is proposed. The type strain of this species is 58(T) (=LMG 28609(T)=CFBP 8305(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.


July 7, 2019  |  

Evaluation of an optimal epidemiologic typing scheme for Legionella pneumophila with whole genome sequence data using validation guidelines.

Sequence-based typing (SBT), analogous to multi-locus sequence typing (MLST), is the current gold-standard typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila However, as common sequence types (STs) cause many infections, some investigations remain unresolved. Here, various whole genome sequencing (WGS)-based methods were evaluated according to published guidelines, including: i) single nucleotide polymorphism (SNP)-based; ii) extended multi-locus sequence typing (MLST) using different numbers of genes; iii) gene presence/absence, and iv) kmer-based. L. pneumophila serogroup 1 isolates (n=106) from the standard “typing panel”, previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI) were tested together with another 229 isolates.Over 98% isolates were considered typable using the mapping- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50-gene) to 86.8% (1455-gene) whilst only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP-based), and all values are higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ~50 genes provides optimal epidemiological concordance whilst substantially improving the discrimination offered by SBT, and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila. Copyright © 2016 David et al.


July 7, 2019  |  

Complete genome sequence of cold-adapted enzyme producing Microbulbifer thermotolerans DAU221.

Microbulbifer thermotolerans DAU221 was preliminary isolated from the marine sediment samples in the Republic of Korea. Here, we present the complete genome sequence of M. thermotolerans DAU221, which consisted of 3,938,396 base pairs with a GC content of 56.57%. This genomic information should help us find the industrially useful enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus.

The button mushroom (Agaricus bisporus) is one of the world’s most cultivated mushroom species, but in spite of its economic importance generation of new cultivars by outbreeding is exceptional. Previous genetic analyses of the white bisporus variety, including all cultivars and most wild isolates revealed that crossing over frequencies are low, which might explain the lack of introducing novel traits into existing cultivars. By generating two high quality whole genome sequence assemblies (one de novo and the other by improving the existing reference genome) of the first commercial white hybrid Horst U1, a detailed study of the crossover (CO) landscape was initiated. Using a set of 626 SNPs in a haploid offspring of 139 single spore isolates and whole genome sequencing on a limited number of homo- and heterokaryotic single spore isolates, we precisely mapped all COs showing that they are almost exclusively restricted to regions of about 100kb at the chromosome ends. Most basidia of A. bisporus var. bisporus produce two spores and pair preferentially via non-sister nuclei. Combined with the COs restricted to the chromosome ends, these spores retain most of the heterozygosity of the parent thus explaining how present-day white cultivars are genetically so close to the first hybrid marketed in 1980. To our knowledge this is the first example of an organism which displays such specific CO landscape. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data.

Carbapenemase-producing organisms have spread worldwide, and infections with these bacteria cause significant morbidity. Horizontal transfer of plasmids that encode carbapenemases plays an important role in the spread of multidrug resistant Gram-negative bacteria. Here we investigate parameters regulating conjugation using an E. coli laboratory strain that lacks plasmids or restriction-enzyme modification systems as a recipient and also using patient isolates as donors and recipients. Because conjugation is tightly regulated, we performed a systematic analysis of the transfer of Klebsiella pneumoniae carbapenemase (blaKPC)-encoding plasmids into multiple strains under different environmental conditions to investigate critical variables. We used four blaKPC-plasmids isolated from patient strains obtained from two hospitals: pKpQIL and pKPC-47e from the National Institutes of Health, and pKPC_UVA01 and pKPC_UVA02 from the University of Virginia. Plasmid transfer frequency differed substantially between different donor and recipient pairs, and was influenced by plasmid content, temperature, and substrate, in addition to donor and recipient strain. pKPC-47e was attenuated in conjugation efficiency across all conditions tested. Despite its presence in multiple clinical species, pKPC_UVA01 had lower conjugation efficiencies than pKpQIL into recipient strains. The conjugation frequency of these plasmids into K. pneumoniae and E. coli patient isolates ranged widely without a clear correlation with clinical epidemiological data. Our results highlight the importance of each variable examined in these controlled experiments. The in vitro models did not reliably predict plasmid mobilization observed in a patient population, indicating that further studies are needed to understand the most important variables affecting horizontal transfer in vivo. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of Bacillus subtilis BSD-2, a microbial germicide isolated from cultivated cotton.

Bacillus subtilis BSD-2, isolated from cotton (Gossypium spp.), had strong antagonistic activity to Verticillium dahlia Kleb and Botrytis cinerea. We sequenced and annotated the BSD-2 complete genome to help us the better use of this strain, which has surfactin, bacilysin, bacillibactin, subtilosin A, Tas A and a potential class IV lanthipeptide biosynthetic pathways. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli.

The objectives of this study were to elucidate the genetic context of a novel plasmid-mediated fosA variant, fosA6, conferring fosfomycin resistance and to characterize the kinetic properties of FosA6.The genome of fosfomycin-resistant Escherichia coli strain YD786 was sequenced. Homologues of FosA6 were identified through BLAST searches. FosA6 and FosA(ST258) were purified and characterized using a steady-state kinetic approach. Inhibition of FosA activity was examined with sodium phosphonoformate.Plasmid-encoded glutathione-S-transferase (GST) FosA6 conferring high-level fosfomycin resistance was identified in a CTX-M-2-producing E. coli clinical strain at a US hospital. fosA6 was carried on a self-conjugative, 69 kb IncFII plasmid. The ?lysR-fosA6-?yjiR_1 fragment, located between IS10R and ?IS26, was nearly identical to those on the chromosomes of some Klebsiella pneumoniae strains (MGH78578, PMK1 and KPPR1). FosA6 shared >99% identity with chromosomally encoded FosA(PMK1) in K. pneumoniae of various STs and 98% identity with FosA(ST258), which is commonly found in K. pneumoniae clonal complex (CC) 258 including ST258. FosA6 and FosA(ST258) demonstrated robust GST activities that were comparable to each other. Sodium phosphonoformate, a GST inhibitor, reduced the fosfomycin MICs by 6- to 24-fold for K. pneumoniae and E. coli strains carrying fosA genes on the chromosomes and plasmids, respectively.fosA6, probably captured from the chromosome of K. pneumoniae, conferred high-level fosfomycin resistance in E. coli. FosA6 functioned as a GST and inactivated fosfomycin efficiently. K. pneumoniae may serve as a reservoir of fosfomycin resistance for E. coli.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Long single-molecule reads can resolve the complexity of the influenza virus composed of rare, closely related mutant variants

As a result of a high rate of mutations and recombination events, an RNA-virus exists as a heterogeneous “swarm” of mutant variants. The long read length offered by single-molecule sequencing technologies allows each mutant variant to be sequenced in a single pass. However, high error rate limits the ability to reconstruct heterogeneous viral population composed of rare, related mutant variants. In this paper, we present 2SNV, a method able to tolerate the high error-rate of the single-molecule protocol and reconstruct mutant variants. 2SNV uses linkage between single nucleotide variations to efficiently distinguish them from read errors. To benchmark the sensitivity of 2SNV, we performed a single-molecule sequencing experiment on a sample containing a titrated level of known viral mutant variants. Our method is able to accurately reconstruct clone with frequency of 0.2 % and distinguish clones that differed in only two nucleotides distantly located on the genome. 2SNV outperforms existing methods for full-length viral mutant reconstruction. The open source implementation of 2SNV is freely available for download at http://?alan.?cs.?gsu.?edu/?NGS/???q=?content/?2snv.


July 7, 2019  |  

Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi.

The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.