Menu
July 7, 2019  |  

Complete Genome Sequences of Four Enterohemolysin-Positive (ehxA) Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains

Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens associated with human disease. Most disease-associated STEC strains carry the locus of enterocyte effacement (LEE); however, regularly LEE-negative STEC strains are recovered from ill patients. Few reference sequences are available for these isolate types. Here, we report here the complete genome sequences for four LEE-negative STEC strains. Copyright © 2016 Lorenz et al.


July 7, 2019  |  

Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine.

Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats.


July 7, 2019  |  

Whole genomic sequence analysis of Bacillus infantis: defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe.

We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were reported. Therefore, to characterize its biological and medical significance, we sought to determine and analyze the complete genome sequence of Bacillus sp. NRRL B-14911.Based on the phylogenetic analysis of 16S ribosomal RNA (rRNA) genes, sequence analysis of the 16S-23S rDNA intergenic transcribed spacers, phenotypic microarray, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we propose that this organism belongs to the species Bacillus infantis, previously shown to be associated with sepsis in a newborn child. Analysis of the complete genome of Bacillus sp. NRRL B-14911 revealed several virulence factors including adhesins, invasins, colonization factors, siderophores and transporters. Likewise, the bacterial genome encodes a wide range of methyl transferases, transporters, enzymatic and biochemical pathways, and insertion sequence elements that are distinct from other closely related bacilli.The complete genome sequence of Bacillus sp. NRRL B-14911 provided in this study may facilitate genetic manipulations to assess gene functions associated with bacterial survival and virulence. Additionally, this bacterium may serve as a useful tool to establish a disease model that permits systematic analysis of autoimmune events in various susceptible rodent strains.


July 7, 2019  |  

Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems.

Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. Here, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding and modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Complete genome sequence of the D-amino acid catabolism bacterium Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea

Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. Copyright © 2016 Fu et al.


July 7, 2019  |  

Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function.

Bifidobacteria, often associated with the gastrointestinal tract of animals, are well known for their roles as probiotics. Among the dozens of Bifidobacterium species, Bifidobacterium bifidum, B. breve, and B. longum are the ones most frequently isolated from the feces of infants and known to help the digestion of human milk oligosaccharides. To investigate the correlation between the metabolic properties of bifidobacteria and their phylogeny, we performed a phylogenomic analysis based on 452 core genes of forty-four completely sequenced Bifidobacterium species. Results show that a major evolutionary event leading to the clade of the infant-adapted species is linked to carbohydrate metabolism, but it is not the only factor responsible for the adaptation of bifidobacteria to the gut. The genome of B. longum subsp. infantis, a typical bifidobacterium in the gut of breast-fed infants, encodes proteins associated with several kinds of species-specific metabolic pathways, including urea metabolism and biosynthesis of riboflavin and lantibiotics. Our results demonstrate that these metabolic features, which are associated with the probiotic function of bifidobacteria, are species-specific and highly correlate with their phylogeny. Copyright © 2016 Elsevier GmbH. All rights reserved.


July 7, 2019  |  

The effects of signal erosion and core genome reduction on the identification of diagnostic markers.

Whole-genome sequence (WGS) data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives.A comparative analysis of 1,130 Burkholderia genomes identified unique markers for many named species, including the human pathogens B. pseudomallei and B. mallei Due to core genome reduction and signature erosion, only 38 targets specific to B. pseudomallei/mallei were identified. By using only public genomes, a larger number of markers were identified, due to undersampling, and this larger number represents the potential for false positives. This analysis has implications for the design of diagnostics for other species where the genomic space of the target and/or closely related species is not well defined. Copyright © 2016 Sahl et al.


July 7, 2019  |  

Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum.

The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal basidiomycetes are also present in C. geophilum with symbiosis-induced, taxon-specific genes of unknown function and reduced numbers of plant cell wall-degrading enzymes. C. geophilum still holds a significant set of genes in categories known to be involved in pathogenesis and shows an increased genome size due to transposable elements proliferation. Transcript profiling revealed a striking upregulation of membrane transporters, including aquaporin water channels and sugar transporters, and mycorrhiza-induced small secreted proteins (MiSSPs) in ectomycorrhiza compared with free-living mycelium. The frequency with which this symbiont is found on tree roots and its possible role in water and nutrient transport in symbiosis calls for further studies on mechanisms of host and environmental adaptation.


July 7, 2019  |  

Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water.

Roseobacter clade bacteria are ubiquitous in marine environments and now thought to be significant contributors to carbon and sulfur cycling. However, only a few strains of roseobacters have been isolated from the deep-sea water column and have not been thoroughly investigated. Here, we present the complete genomes of phylogentically closed related Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014 isolated from deep-sea water of the Southeastern Pacific. The genome sequences showed that the two deep-sea roseobacters carry genes for versatile metabolisms with functional capabilities such as ribulose bisphosphate carboxylase-mediated carbon fixation and inorganic sulfur oxidation. Physiological and biochemical analysis showed that T. profunda JLT2016 was capable of autotrophy, heterotrophy, and mixotrophy accompanied by the production of exopolysaccharide. Heterotrophic carbon fixation via anaplerotic reactions contributed minimally to bacterial biomass. Comparative proteomics experiments showed a significantly up-regulated carbon fixation and inorganic sulfur oxidation associated proteins under chemolithotrophic conditions compared to heterotrophic conditions. Collectively, rosebacters show a high metabolic flexibility, suggesting a considerable capacity for adaptation to the marine environment.


July 7, 2019  |  

Complete genome sequence of plant growth-promoting bacterium Leifsonia xyli SE134, a possible gibberellin and auxin producer.

Leifsonia xyli SE134 is a potential plant growth-promoting bacterium isolated from a soil in Daegu, Republic of Korea, which produces large amounts of gibberellin (GA) and indole acetic acid (IAA). In this study, we sequenced the complete genome of L. xyli SE134 by the Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. The genome of L. xyli SE134 contains a single chromosome that is 3,596,761bp in length, with 70.2% G+C content. The genome contains 3466 protein-coding genes (CDSs) and 51 rRNA- and 46 tRNA-coding genes. By genomic analysis, we identified genes that are potentially involved in plant growth promotion such as genes participating in indole-3-acetic acid (IAA) biosynthesis, siderophore, and trehalose production. L. xyli SE134 also harbours genes for central carbohydrate metabolism, indicating that it can utilise the root exudates with other organic materials as an energy source. Furthermore, the SE134 genome is equipped with various kinds of genes for adaptation to plant surfaces, e.g. defence against desiccation, nutrient deficiencies, and oxidative stress, and a large proportion of genes related to secretion mechanisms and signalling. The genetic information provided here may help to expand this bacterium’s biotechnological potential and to further improve its plant growth-promoting characteristics. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of pigmentation-negative Yersinia pestis strain Cadman.

Here, we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain lacking the pgm locus. Y. pestis is the causative agent of plague and generally must be worked with under biosafety level 3 (BSL-3) conditions. However, strains lacking the pgm locus are considered safe to work with under BSL-2 conditions. Copyright © 2016 Lovett et al.


July 7, 2019  |  

Complete genome sequences of four different Bordetella sp. isolates causing human respiratory infections.

Species of the genus Bordetella associate with various animal hosts, frequently causing respiratory disease. Bordetella pertussis is the primary agent of whooping cough and other Bordetella species can cause similar cough illness. Here, we report four complete genome sequences from isolates of different Bordetella species recovered from human respiratory infections. Copyright © 2016 Weigand et al.


July 7, 2019  |  

Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil.

Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.


July 7, 2019  |  

Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens.

Intestinimonas is a newly described bacterial genus with representative strains present in the intestinal tract of human and other animals. Despite unique metabolic features including the production of butyrate from both sugars and amino acids, there is to date no data on their diversity, ecology, and physiology. Using a comprehensive phylogenetic approach, Intestinimomas was found to include at least three species that colonize primarily the human and mouse intestine. We focused on the most common and cultivable species of the genus, Intestinimonas butyriciproducens, and performed detailed genomic and physiological comparison of strains SRB521(T) and AF211, isolated from the mouse and human gut respectively. The complete 3.3-Mb genomic sequences of both strains were highly similar with 98.8% average nucleotide identity, testifying to their assignment to one single species. However, thorough analysis revealed significant genomic rearrangements, variations in phage-derived sequences, and the presence of new CRISPR sequences in both strains. Moreover, strain AF211 appeared to be more efficient than strain SRB521(T) in the conversion of the sugars arabinose and galactose. In conclusion, this study provides genomic and physiological insight into Intestinimonas butyriciproducens, a prevalent butyrate-producing species, differentiating strains that originate from the mouse and human gut.© 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and JohnWiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.