Menu
April 21, 2020  |  

A putative microcin amplifies Shiga toxin 2a production of Escherichia coli O157: H7

Escherichia coli O157:H7 is a foodborne pathogen, implicated in various multi-state outbreaks. It encodes Shiga toxin on a prophage, and Shiga toxin production is linked to phage induction. An E. coli strain, designated 0.1229, was identified that amplified Stx2a production when co-cultured with E. coli O157:H7 strain PA2. Growth of PA2 in 0.1229 cell-free supernatants had a similar effect, even when supernatants were heated to 100°C for 10 min, but not after treatment with Proteinase K. The secreted molecule was shown to use TolC for export and the TonB system for import. The genes sufficient for production of this molecule were localized to a 5.2 kb region of a 12.8 kb plasmid. This region was annotated, identifying hypothetical proteins, a predicted ABC transporter, and a cupin superfamily protein. These genes were identified and shown to be functional in two other E. coli strains, and bioinformatic analyses identified related gene clusters in similar and distinct bacterial species. These data collectively suggest E. coli 0.1229 and other E. coli produce a microcin that induces the SOS response in target bacteria. Besides adding to the limited number of microcins known to be produced by E. coli, this study provides an additional mechanism by which stx2a expression is increased in response to the gut microflora.


April 21, 2020  |  

Genetically diverse uropathogenic Escherichia coli adopt a common transcriptional program in patients with urinary tract infections

Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTIs). A common virulence genotype of UPEC strains responsible for UTIs is yet to be defined, due to the large variation of virulence factors observed in UPEC strains. We hypothesized that studying UPEC functional responses in patients might reveal universal UPEC features that enable pathogenesis. Here we identify a transcriptional program shared by genetically diverse UPEC strains isolated from 14 patients during uncomplicated UTIs. Strikingly, this in vivo gene expression program is marked by upregulation of translational machinery, providing a mechanism for the rapid growth within the host. Our analysis indicates that switching to a more specialized catabolism and scavenging lifestyle in the host allows for the increased translational output. Our study identifies a common transcriptional program underlying UTIs and illuminates the molecular underpinnings that likely facilitate the fast growth rate of UPEC in infected patients.


April 21, 2020  |  

The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants

Most angiosperms bear hermaphroditic flowers, but a few species have evolved outcrossing strategies, such as dioecy, the presence of separate male and female individuals. We previously investigated the mechanisms underlying dioecy in diploid persimmon (D. lotus) and found that male flowers are specified by repression of the autosomal gene MeGI by its paralog, the Y-encoded pseudo-gene OGI. This mechanism is thought to be lineage-specific, but its evolutionary path remains unknown. Here, we developed a full draft of the diploid persimmon genome (D. lotus), which revealed a lineage-specific genome-wide paleoduplication event. Together with a subsequent persimmon-specific duplication(s), these events resulted in the presence of three paralogs, MeGI, OGI and newly identified Sister of MeGI (SiMeGI), from the single original gene. Evolutionary analysis suggested that MeGI underwent adaptive evolution after the paleoduplication event. Transformation of tobacco plants with MeGI and SiMeGI revealed that MeGI specifically acquired a new function as a repressor of male organ development, while SiMeGI presumably maintained the original function. Later, local duplication spawned MeGI’s regulator OGI, completing the path leading to dioecy. These findings exemplify how duplication events can provide flexible genetic material available to help respond to varying environments and provide interesting parallels for our understanding of the mechanisms underlying the transition into dieocy in plants.


April 21, 2020  |  

A megaplasmid family responsible for dissemination of multidrug resistance in Pseudomonas

Multidrug resistance (MDR) represents a global threat to health. Although plasmids can play an important role in the dissemination of MDR, they have not been commonly linked to the emergence of antimicrobial resistance in the pathogen Pseudomonas aeruginosa. We used whole genome sequencing to characterize a collection of P. aeruginosa clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicated that 1) these large plasmids comprise a family present in different members of the Pseudomonas genus and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the pangenome of the megaplasmid family is highly flexible and diverse, comprising a substantial core genome (average of 48% of plasmid genes), but with individual members carrying large numbers of unique genes. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s.


April 21, 2020  |  

The genomic diversification of clonally propagated grapevines

Vegetatively propagated clones accumulate somatic mutations. The purpose of this study was to better understand the consequences of clonal propagation and involved defining the nature of somatic mutations throughout the genome. Fifteen Zinfandel winegrape clone genomes were sequenced and compared to one another using a highly contiguous genome reference produced from one of the clones, Zinfandel 03. Though most heterozygous variants were shared, somatic mutations accumulated in individual and subsets of clones. Overall, heterozygous mutations were most frequent in intergenic space and more frequent in introns than exons. A significantly larger percentage of CpG, CHG, and CHH sites in repetitive intergenic space experienced transition mutations than genic and non-repetitive intergenic spaces, likely because of higher levels of methylation in the region and the increased likelihood of methylated cytosines to spontaneously deaminate. Of the minority of mutations that occurred in exons, larger proportions of these were putatively deleterious when they occurred in relatively few clones. These data support three major conclusions. First, repetitive intergenic space is a major driver of clone genome diversification. Second, clonal propagation is associated with the accumulation of putatively deleterious mutations. Third, the data suggest selection against deleterious variants in coding regions such that mutations are less frequent in coding than noncoding regions of the genome.


April 21, 2020  |  

First near complete haplotype phased genome assembly of River buffalo (Bubalus bubalis)

This study reports the first haplotype phased reference quality genome assembly of textquoteleftMurrahtextquoteright an Indian breed of river buffalo. A mother-father-progeny trio was used for sequencing so that the individual haplotypes could be assembled in the progeny. Parental DNA samples were sequenced on the Illumina platform to generate a total of 274 Gb paired-end data. The progeny DNA sample was sequenced using PacBio long reads and 10x Genomics linked reads at 166x coverage along with 802Gb of optical mapping data. Trio binning based FALCON assembly of each haplotype was scaffolded with 10x Genomics reads and superscaffolded with BioNano Maps to build reference quality assembly of sire and dam haplotypes of 2.63Gb and 2.64Gb with just 59 and 64 scaffolds and N50 of 81.98Mb and 83.23Mb, respectively. BUSCO single copy core gene set coverage was > 91.25%, and gVolante-CEGMA completeness was >96.14% for both haplotypes. Finally, RaGOO was used to order and build the chromosomal level assembly with 25 scaffolds and N50 of 117.48 Mb (sire haplotype) and 118.51 Mb (dam haplotype). The improved haplotype phased genome assembly of river buffalo may provide valuable resources to discover molecular mechanisms related to milk production and reproduction traits.


April 21, 2020  |  

Integrative functional genomics decodes herpes simplex virus 1

Since the genome of herpes simplex virus 1 (HSV-1) was first sequenced more than 30 years ago, its predicted 80 genes have been intensively studied. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identified a total of 201 viral transcripts and 284 open reading frames (ORFs) including all known and 46 novel large ORFs. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of novel viral ORFs as well as N-terminal extensions (NTEs) and truncations thereof. We show that key viral regulators and structural proteins possess NTEs, which initiate from non-canonical start codons and govern subcellular protein localization and packaging. We validated a novel non-canonical large spliced ORF in the ICP0 locus and identified a 93 aa ORF overlapping ICP34.5 that is thus also deleted in the FDA-approved oncolytic virus Imlygic. Finally, we extend the current nomenclature to include all novel viral gene products. Taken together, this work provides a valuable resource for future functional studies, vaccine design and oncolytic therapies.


April 21, 2020  |  

Long metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity

High-throughput environmental DNA metabarcoding has revolutionized the analysis of microbial diversity, but this approach is generally restricted to amplicon sizes below 500 base pairs. These short regions contain limited phylogenetic signal, which makes it impractical to use environmental DNA in full phylogenetic inferences. However, new long-read sequencing technologies such as the Pacific Biosciences platform may provide sufficiently large sequence lengths to overcome the poor phylogenetic resolution of short amplicons. To test this idea, we amplified soil DNA and used PacBio Circular Consensus Sequencing (CCS) to obtain a ~4500 bp region of the eukaryotic rDNA operon spanning most of the small (18S) and large subunit (28S) ribosomal RNA genes. The CCS reads were first treated with a novel curation workflow that generated 650 high-quality OTUs containing the physically linked 18S and 28S regions of the long amplicons. In order to assign taxonomy to these OTUs, we developed a phylogeny-aware approach based on the 18S region that showed greater accuracy and sensitivity than similarity-based and phylogenetic placement-based methods using shorter reads. The taxonomically-annotated OTUs were then combined with available 18S and 28S reference sequences to infer a well-resolved phylogeny spanning all major groups of eukaryotes, allowing to accurately derive the evolutionary origin of environmental diversity. A total of 1019 sequences were included, of which a majority (58%) corresponded to the new long environmental CCS reads. Comparisons to the 18S-only region of our amplicons revealed that the combined 18S-28S genes globally increased the phylogenetic resolution, recovering specific groupings otherwise missing. The long-reads also allowed to directly investigate the relationships among environmental sequences themselves, which represents a key advantage over the placement of short reads on a reference phylogeny. Altogether, our results show that long amplicons can be treated in a full phylogenetic framework to provide greater taxonomic resolution and a robust evolutionary perspective to environmental DNA.


April 21, 2020  |  

Hemimetabolous insects elucidate the origin of sexual development via alternative splicing

Insects are the only animals in which sexual differentiation is controlled by sex-specific RNA splicing. The doublesex (dsx) transcription factor produces distinct male and female protein isoforms (DsxM and DsxF) under the control of the RNA splicing factor transformer (tra). tra itself is also alternatively spliced so that a functional Tra protein is only present in females; thus, DsxM is produced by default, while DsxF expression requires Tra. The sex-specific Dsx isoforms are essential for both male and female sexual differentiation. This pathway is profoundly different from the molecular mechanisms that control sex-specific development in other animal groups. In animals as different as vertebrates, nematodes, and crustaceans, sexual differentiation involves male-specific transcription of dsx-related transcription factors that are not alternatively spliced and play no role in female sexual development. To understand how the unique splicing-based mode of sexual differentiation found in insects evolved from a more ancestral transcription-based mechanism, we examined dsx and tra expression in three basal, hemimetabolous insect orders. We find that functional Tra protein is limited to females in the kissing bug Rhodnius prolixus (Hemiptera), but is present in both sexes in the louse Pediculus humanus (Phthiraptera) and the cockroach Blattella germanica (Blattodea). Although alternatively spliced dsx isoforms are seen in all these insects, they are sex-specific in the cockroach and the kissing bug but not in the louse. In B. germanica, RNAi experiments show that dsx is necessary for male, but not female, sexual differentiation, while tra controls female development via a dsx-independent pathway. Our results suggest that the distinctive insect mechanism based on the tra-dsx splicing cascade evolved in a gradual, mosaic process: sex-specific splicing of dsx predates its role in female sexual differentiation, while the role of tra in regulating dsx splicing and in sexual development more generally predates sex-specific expression of the Tra protein. We present a model where the canonical tra-dsx axis originated via merger between expanding dsx function (from males to both sexes) and narrowing tra function (from a general splicing factor to the dedicated regulator of dsx).


April 21, 2020  |  

Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research

Background The wheel tree (Trochodendron aralioides) is one of only two species in the basal eudicot order Trochodendrales. Together with Tetracentron sinense, the family is unique in having secondary xylem without vessel elements, long considered to be a primitive character also found in Amborella and Winteraceae. Recent studies however have shown that Trochodendraceae belong to basal eudicots and demonstrate this represents an evolutionary reversal for the group. Trochodendron aralioides is widespread in cultivation and popular for use in gardens and parks. Findings We assembled the T. aralioides genome using a total of 679.56 Gb of clean reads that were generated using both PacBio and Illumina short-reads in combination with 10XGenomics and Hi-C data. Nineteen scaffolds corresponding to 19 chromosomes were assembled to a final size of 1.614 Gb with a scaffold N50 of 73.37 Mb in addition to 1,534 contigs. Repeat sequences accounted for 64.226% of the genome, and 35,328 protein-coding genes with an average of 5.09 exons per gene were annotated using de novo, RNA-seq, and homology-based approaches. According to a phylogenetic analysis of protein-coding genes, T. aralioides diverged in a basal position relatively to core eudicots, approximately 121.8-125.8 million years ago. Conclusions Trochodendron aralioides is the first chromosome-scale genome assembled in the order Trochodendrales. It represents the largest genome assembled to date in the basal eudicot grade, as well as the closest order relative to the core-eudicots, as the position of Buxales remains unresolved. This genome will support further studies of wood morphology and floral evolution, and will be an essential resource for understanding rapid changes that took place at the base of the Eudicot tree. Finally, it can serve as a valuable source to aid both the acceleration of genome-assisted improvement for cultivation and conservation efforts of the wheel tree.


April 21, 2020  |  

Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of hexaploid wheat and diploid Aegilops tauschii

Polyploidy has been centrally important in driving the evolution of plants, and leads to alterations in gene expression that are thought to underlie the emergence of new traits. Despite the common occurrence of these global patterns of altered gene expression in polyploids, the mechanisms involved are not well understood. Using a precise framework of highly conserved syntenic genes on hexaploid wheat chromosome 3DL and its progenitor 3L chromosome arm of diploid Aegilops tauschii, we show that 70% of these genes exhibited proportionally reduced gene expression, in which expression in the hexaploid context of the 3DL genes was approximately 40% of the levels observed in diploid Ae. tauschii. Many genes showing elevated expression during later stages of grain development in wheat compared to Ae. tauschii. Gene sequence and methylation differences accounted for only a few cases of differences in gene expression. In contrast, large scale patterns of reduced chromatin accessibility of genes in the hexaploid chromosome arm compared to its diploid progenitor were correlated with observed overall reduction in gene expression and differential gene expression. Therefore, that an overall reduction in accessible chromatin underlies the major differences in gene expression that results from polyploidization.


April 21, 2020  |  

Convergent evolution of linked mating-type loci in basidiomycetes: an ancient fusion event that has stood the test of time

Sexual development is a key evolutionary innovation of eukaryotes. In many species, mating involves interaction between compatible mating partners that can undergo cell and nuclear fusion and subsequent steps of development including meiosis. Mating compatibility in fungi is governed by mating type determinants, which are localized at mating type (MAT) loci. In basidiomycetes, the ancestral state is hypothesized to be tetrapolar (bifactorial), with two genetically unlinked MAT loci containing homeodomain transcription factor genes (HD locus) and pheromone and pheromone receptor genes (P/R locus), respectively. Alleles at both loci must differ between mating partners for completion of sexual development. However, there are also basidiomycete species with bipolar (unifactorial) mating systems, which can arise through genomic linkage of the HD and P/R loci. In the order Tremellales, which is comprised of mostly yeast-like species, bipolarity is found only in the human pathogenic Cryptococcus species. Here, we describe the analysis of MAT loci from the Trichosporonales, a sister order to the Tremellales. We analyzed genome sequences from 29 strains that belong to 24 species, including two new genome sequences generated in this study. Interestingly, in all of the species analyzed, the MAT loci are fused and a single HD gene is present in each mating type. This is similar to the organization in the pathogenic Cryptococci, which also have linked MAT loci and carry only one HD gene per MAT locus instead of the usual two HD genes found in the vast majority of basidiomycetes. However, the HD and P/R allele combinations in the Trichosporonales are different from those in the pathogenic Cryptococcus species. The differences in allele combinations compared to the bipolar Cryptococci as well as the existence of tetrapolar Tremellales sister species suggest that fusion of the HD and P/R loci and differential loss of one of the two HD genes per MAT allele occurred independently in the Trichosporonales and pathogenic Cryptococci. This finding supports the hypothesis of convergent evolution at the molecular level towards fused mating-type regions in fungi, similar to previous findings in other fungal groups. Unlike the fused MAT loci in several other basidiomycete lineages though, the gene content and gene order within the fused MAT loci are highly conserved in the Trichosporonales, and there is no apparent suppression of recombination extending from the MAT loci to adjacent chromosomal regions, suggesting different mechanisms for the evolution of physically linked MAT loci in these groups.


April 21, 2020  |  

Antibiotic production is organized by a division of labour in Streptomyces

One of the hallmark behaviors of social groups is division of labour, where different group members become specialized to carry out complementary tasks. By dividing labour, cooperative groups of individuals increase their efficiency, thereby raising group fitness even if these specialized behaviors reduce the fitness of individual group members. Here we provide evidence that antibiotic production in colonies of the multicellular bacterium Streptomyces coelicolor is coordinated by a division of labour. We show that S. coelicolor colonies are genetically heterogeneous due to massive amplifications and deletions to the chromosome. Cells with gross chromosomal changes produce an increased diversity of secondary metabolites and secrete significantly more antibiotics; however, these changes come at the cost of dramatically reduced individual fitness, providing direct evidence for a trade-off between secondary metabolite production and fitness. Finally, we show that colonies containing mixtures of mutant strains and their parents produce significantly more antibiotics, while colony-wide spore production remains unchanged. Our work demonstrates that by generating mutants that are specialized to hyper-produce antibiotics, streptomycetes reduce the colony-wide fitness costs of secreted secondary metabolites while maximizing the yield and diversity of these products.


April 21, 2020  |  

Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae.

Natural competence for transformation is a primary mode of horizontal gene transfer. Competent bacteria are able to absorb free DNA from their surroundings and exchange this DNA against pieces of their own genome when sufficiently homologous. However, the prevalence of non-degraded DNA with sufficient coding capacity is not well understood. In this context, we previously showed that naturally competent Vibrio cholerae use their type VI secretion system (T6SS) to actively acquire DNA from non-kin neighbors. Here, we explored the conditions of the DNA released through T6SS-mediated killing versus passive cell lysis and the extent of the transfers that occur due to these conditions. We show that competent V. cholerae acquire DNA fragments with a length exceeding 150 kbp in a T6SS-dependent manner. Collectively, our data support the notion that the environmental lifestyle of V. cholerae fosters the exchange of genetic material with sufficient coding capacity to significantly accelerate bacterial evolution. © 2019, Matthey et al.


April 21, 2020  |  

Identification and characterization of OmpT-like proteases in uropathogenic Escherichia coli clinical isolates

Bacterial colonization of the urogenital tract is limited by innate defenses, including the production of antimicrobial peptides (AMPs). Uropathogenic Escherichia coli (UPEC) resist AMP-killing to cause a range of urinary tract infections (UTIs) including asymptomatic bacteriuria, cystitis, pyelonephritis, and sepsis. UPEC strains have high genomic diversity and encode numerous virulence factors that differentiate them from non-UTI causing strains, including ompT. As OmpT homologues cleave and inactivate AMPs, we hypothesized that high OmpT protease activity-levels contribute to UPEC colonization during symptomatic UTIs. Therefore, we measured OmpT activity in 58 UPEC clinical isolates. While heterogeneous OmpT activities were observed, OmpT activity was significantly greater in UPEC strains isolated from patients with symptomatic infections. Unexpectedly, UPEC strains exhibiting the greatest protease activities harboured an additional ompT-like gene called arlC (ompTp). The presence of two OmpT-like proteases in some UPEC isolates led us to compare the substrate specificities of OmpT-like proteases found in E. coli. While all three cleaved AMPs, cleavage efficiency varied on the basis of AMP size and secondary structure. Our findings suggest the presence ArlC and OmpT in the same UPEC isolate may confer a fitness advantage by expanding the range of target substrates.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.