July 19, 2019  |  

Genomic epidemiology of hypervirulent serogroup W, ST-11 Neisseria meningitidis

Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African ‘meningitis belt’ and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone). It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of the Hajj clone. Whole genome sequences of 270 meningococcal strains isolated from patients with invasive meningococcal disease globally from 1970 to 2013 were compared using whole genome phylogenetic and major antigen-encoding gene sequence analyses. We found that all W ST-11 strains were descendants of an ancestral strain that had undergone unique capsular switching events. The Hajj clone and its descendants were distinct from other W ST-11 strains in that they shared a common antigen gene profile and had undergone recombination involving virulence genes encoding factor H binding protein, nitric oxide reductase, and nitrite reductase. These data demonstrate that recent acquisition of a distinct antigen-encoding gene profile and variations in meningococcal virulence genes was associated with the emergence of the Hajj clone. Importantly, W ST-11 strains unrelated to the Hajj outbreak contribute a significant proportion of W ST-11 cases globally. This study helps illuminate genomic factors associated with meningococcal strain emergence and evolution.


July 19, 2019  |  

DNA methylation assessed by SMRT Sequencing is linked to mutations in Neisseria meningitidis isolates.

The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of prokaryotic genomes.


July 7, 2019  |  

Complete genome sequences of three Neisseria gonorrhoeae laboratory reference Strains, determined using PacBio Single-Molecule Real-Time technology.

Neisseria gonorrhoeae, the etiological agent that causes the sexually transmitted infection gonorrhea, is a significant public health concern due to the emergence of antimicrobial resistance. We report the complete genome sequences of three reference isolates with varied antimicrobial susceptibility that will aid in elucidating the genetic mechanisms that confer resistance. Copyright © 2015 Abrams et al.


July 7, 2019  |  

Genetic analysis of Neisseria meningitidis sequence type 7 serogroup X originating from serogroup A.

Neisseria meningitidis causes meningococcal disease, often resulting in fulminant meningitis, sepsis, and death. Vaccination programs have been developed to prevent infection of this pathogen, but serogroup replacement is a problem. Capsular switching has been an important survival mechanism for N. meningitidis, allowing the organism to evolve in the present vaccine era. However, related mechanisms have not been completely elucidated. Genetic analysis of capsular switching between diverse serogroups would help further our understanding of this pathogen. In this study, we analyzed the genetic characteristics of the sequence type 7 (ST-7) serogroup X strain that was predicted to arise from ST-7 serogroup A at the genomic level. By comparing the genomic structures and sequences, ST-7 serogroup X was closest to ST-7 serogroup A, whereas eight probable recombination regions, including the capsular gene locus, were identified. This indicated that serogroup X originated from serogroup A by recombination leading to capsular switching. The recombination involved approximately 8,540 bp from the end of the ctrC gene to the middle of the galE gene. There were more recombination regions and strain-specific single-nucleotide polymorphisms in serogroup X than in serogroup A genomes. However, no specific gene was found for each serogroup except those in the capsule gene locus. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Emergence of a new Neisseria meningitidis clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen.

Neisseria meningitidis (Nm) clonal complex 11 (cc11) lineage is a hypervirulent pathogen responsible for outbreaks of invasive meningococcal disease, including among men who have sex with men, and is increasingly associated with urogenital infections. Recently, clusters of Nm urethritis have emerged primarily among heterosexual males in the United States. We determined that nonencapsulated meningococcal isolates from an ongoing Nm urethritis outbreak among epidemiologically unrelated men in Columbus, Ohio, are linked to increased Nm urethritis cases in multiple US cities, including Atlanta and Indianapolis, and that they form a unique clade (the US Nm urethritis clade, US_NmUC). The isolates belonged to the cc11 lineage 11.2/ET-15 with fine type of PorA P1.5-1, 10-8; FetA F3-6; PorB 2-2 and express a unique FHbp allele. A common molecular fingerprint of US_NmUC isolates was an IS1301 element in the intergenic region separating the capsule ctr-css operons and adjacent deletion of cssA/B/C and a part of csc, encoding the serogroup C capsule polymerase. This resulted in the loss of encapsulation and intrinsic lipooligosaccharide sialylation that may promote adherence to mucosal surfaces. Furthermore, we detected an IS1301-mediated inversion of an ~20-kb sequence near the cps locus. Surprisingly, these isolates had acquired by gene conversion the complete gonococcal denitrification norB-aniA gene cassette, and strains grow well anaerobically. The cc11 US_NmUC isolates causing urethritis clusters in the United States may have adapted to a urogenital environment by loss of capsule and gene conversion of the Neisseria gonorrheae norB-aniA cassette promoting anaerobic growth.


July 7, 2019  |  

Emergence and genomic diversification of a virulent serogroup W: ST-2881 (CC175) Neisseria meningitidis clone in the African meningitis belt

Countries of the African ‘meningitis belt’ are susceptible to meningococcal meningitis outbreaks. While in the past major epidemics have been primarily caused by serogroup A meningococci, W strains are currently responsible for most of the cases. After an epidemic in Mecca in 2000, W:ST-11 strains have caused many outbreaks worldwide. An unrelated W:ST-2881 clone was described for the first time in 2002, with the first meningitis cases caused by these bacteria reported in 2003. Here we describe results of a comparative whole-genome analysis of 74 W:ST-2881 strains isolated within the framework of two longitudinal colonization and disease studies conducted in Ghana and Burkina Faso. Genomic data indicate that the W:ST-2881 clone has emerged from Y:ST-175(CC175) bacteria by capsule switching. The circulating W:ST-2881 populations were composed of a variety of closely related but distinct genomic variants with no systematic differences between colonization and disease isolates. Two distinct and geographically clustered phylogenetic clonal variants were identified in Burkina Faso and a third in Ghana. On the basis of the presence or absence of 17 recombination fragments, the Ghanaian variant could be differentiated into five clusters. All 25 Ghanaian disease isolates clustered together with 23 out of 40 Ghanaian isolates associated with carriage within one cluster, indicating that W:ST-2881 clusters differ in virulence. More than half of the genes affected by horizontal gene transfer encoded proteins of the ‘cell envelope’ and the ‘transport/binding protein’ categories, which indicates that exchange of non-capsular antigens plays an important role in immune evasion.


July 7, 2019  |  

Neisseria lactamica Y92-1009 complete genome sequence.

We present the high quality, complete genome assembly of Neisseria lactamica Y92-1009 used to manufacture an outer membrane vesicle (OMV)-based vaccine, and a member of the Neisseria genus. The strain is available on request from the Public Health England Meningococcal Reference Unit. This Gram negative, dipplococcoid bacterium is an organism of worldwide clinical interest because human nasopharyngeal carriage is related inversely to the incidence of meningococcal disease, caused by Neisseria meningitidis. The organism sequenced was isolated during a school carriage survey in Northern Ireland in 1992 and has been the subject of a variety of laboratory and clinical studies. Four SMRT cells on a RSII machine by Pacific Biosystems were used to produce a complete, closed genome assembly. Sequence data were obtained for a total of 30,180,391 bases from 2621 reads and assembled using the HGAP algorithm. The assembly was corrected using short reads obtained from an Illumina HiSeq 2000instrument. This resulted in a 2,146,723 bp assembly with approximately 460 fold mean coverage depth and a GC ratio of 52.3%.


July 7, 2019  |  

A case of decreased susceptibility to ceftriaxone in Neisseria gonorrhoeae in the absence of a mosaic penicillin-binding protein 2 (penA) allele.

We report a case of Neisseria gonorrhoeae with a non-mosaic penA allele that exhibited decreased susceptibility to extended-spectrum cephalosporins, including a ceftriaxone minimum inhibitory concentration of 0.5 µg/mL. An analysis of resistance determinants suggested that the observed phenotype might have resulted from the combined effects of mutations in multiple genes.


July 7, 2019  |  

Complete genome sequence of Neisseria weaveri strain NCTC13585.

Neisseria weaveri is a commensal organism of the canine oral cavity and an occasional opportunistic human pathogen which is associated with dog bite wounds. Here we report the first complete genomic sequence of the N. weaveri NCTC13585 (CCUG30381) strain, which was originally isolated from a patient with a canine bite wound. Copyright © 2016 Alexander et al.


July 7, 2019  |  

Whole-genome characterization of epidemic Neisseria meningitidis serogroup C and resurgence of serogroup W, Niger, 2015.

In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013-2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.