Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African ‘meningitis belt’ and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone). It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of…
The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest…
Neisseria gonorrhoeae, the etiological agent that causes the sexually transmitted infection gonorrhea, is a significant public health concern due to the emergence of antimicrobial resistance. We report the complete genome sequences of three reference isolates with varied antimicrobial susceptibility that will aid in elucidating the genetic mechanisms that confer resistance. Copyright © 2015 Abrams et al.
Neisseria meningitidis causes meningococcal disease, often resulting in fulminant meningitis, sepsis, and death. Vaccination programs have been developed to prevent infection of this pathogen, but serogroup replacement is a problem. Capsular switching has been an important survival mechanism for N. meningitidis, allowing the organism to evolve in the present vaccine era. However, related mechanisms have not been completely elucidated. Genetic analysis of capsular switching between diverse serogroups would help further our understanding of this pathogen. In this study, we analyzed the genetic characteristics of the sequence type 7 (ST-7) serogroup X strain that was predicted to arise from ST-7 serogroup…
Neisseria meningitidis (Nm) clonal complex 11 (cc11) lineage is a hypervirulent pathogen responsible for outbreaks of invasive meningococcal disease, including among men who have sex with men, and is increasingly associated with urogenital infections. Recently, clusters of Nm urethritis have emerged primarily among heterosexual males in the United States. We determined that nonencapsulated meningococcal isolates from an ongoing Nm urethritis outbreak among epidemiologically unrelated men in Columbus, Ohio, are linked to increased Nm urethritis cases in multiple US cities, including Atlanta and Indianapolis, and that they form a unique clade (the US Nm urethritis clade, US_NmUC). The isolates belonged to…
Countries of the African ‘meningitis belt’ are susceptible to meningococcal meningitis outbreaks. While in the past major epidemics have been primarily caused by serogroup A meningococci, W strains are currently responsible for most of the cases. After an epidemic in Mecca in 2000, W:ST-11 strains have caused many outbreaks worldwide. An unrelated W:ST-2881 clone was described for the first time in 2002, with the first meningitis cases caused by these bacteria reported in 2003. Here we describe results of a comparative whole-genome analysis of 74 W:ST-2881 strains isolated within the framework of two longitudinal colonization and disease studies conducted in…
We present the high quality, complete genome assembly of Neisseria lactamica Y92-1009 used to manufacture an outer membrane vesicle (OMV)-based vaccine, and a member of the Neisseria genus. The strain is available on request from the Public Health England Meningococcal Reference Unit. This Gram negative, dipplococcoid bacterium is an organism of worldwide clinical interest because human nasopharyngeal carriage is related inversely to the incidence of meningococcal disease, caused by Neisseria meningitidis. The organism sequenced was isolated during a school carriage survey in Northern Ireland in 1992 and has been the subject of a variety of laboratory and clinical studies. Four…
We report a case of Neisseria gonorrhoeae with a non-mosaic penA allele that exhibited decreased susceptibility to extended-spectrum cephalosporins, including a ceftriaxone minimum inhibitory concentration of 0.5 µg/mL. An analysis of resistance determinants suggested that the observed phenotype might have resulted from the combined effects of mutations in multiple genes.
Neisseria weaveri is a commensal organism of the canine oral cavity and an occasional opportunistic human pathogen which is associated with dog bite wounds. Here we report the first complete genomic sequence of the N. weaveri NCTC13585 (CCUG30381) strain, which was originally isolated from a patient with a canine bite wound. Copyright © 2016 Alexander et al.
Neisseria gonorrhoeae strains with coresistance to the first-line antimicrobial treatments azithromycin and ceftriaxone are an emerging public health threat. Here, we present the complete genome sequences of three strains of N. gonorrhoeae, including one susceptible strain and two strains with coresistance to ceftriaxone and azithromycin.© Crown copyright 2016.
In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks…