X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Genome Analyses of a New Mycoplasma Species from the Scorpion Centruroides vittatus.

Arthropod Mycoplasma are little known endosymbionts in insects, primarily known as plant disease vectors. Mycoplasma in other arthropods such as arachnids are unknown. We report the first complete Mycoplasma genome sequenced, identified, and annotated from a scorpion, Centruroides vittatus, and designate it as Mycoplasma vittatus We find the genome is at least a 683,827 bp single circular chromosome with a GC content of 42.7% and with 987 protein-coding genes. The putative virulence determinants include 11 genes associated with the virulence operon associated with protein synthesis or DNA transcription and ten genes with antibiotic and toxic compound resistance. Comparative analysis revealed…

Read More »

Tuesday, April 21, 2020

The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes.

Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations. The parasitic success of H. glycines relies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are…

Read More »

Sunday, September 22, 2019

Complete genome sequence of Enterococcus durans Oregon-R-modENCODE strain BDGP3, a lactic acid bacterium found in the Drosophila melanogaster gut

Enterococcus durans Oregon-R-modENCODE strain BDGP3 was isolated from the Drosophila melanogaster gut for functional host-microbe interaction studies. The complete genome is composed of a single circular genome of 2,983,334 bp, with a G+C content of 38%, and a single plasmid of 5,594 bp. Copyright © 2017 Wan et al.

Read More »

Sunday, September 22, 2019

Reference assembly and annotation of the Pyrenophora teres f. teres isolate 0-1.

Pyrenophora teres f.teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley-growing regions throughout the world. Typical yield losses due to NFNB range from 10 to 40%; however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently, genomic resources for this economically important pathogen are limited to a fragmented draft genome assembly and annotation, with limited RNA support of theP. teresf.teresisolate 0-1. This research presents an updated 0-1 reference assembly facilitated by long-read sequencing and scaffolding with the assistance of genetic linkage maps. Additionally,…

Read More »

Sunday, July 7, 2019

High-quality draft genome sequence of actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of type II polyketide azicemicins, using Illumina and PacBio Technologies.

Here, we report the high-quality draft genome sequence of actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of the type II polyketide azicemicins, obtained using Illumina and PacBio sequencing technologies. The 11.75-Mbp genome contains >11,000 genes and 22 polyketide and nonribosomal peptide natural product gene clusters. Copyright © 2015 Ogasawara et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Kocuria palustris MU14/1.

Presented here is the first completely assembled genome sequence of Kocuria palustris, an actinobacterial species with broad ecological distribution. The single, circular chromosome of K. palustris MU14/1 comprises 2,854,447 bp, has a G+C content of 70.5%, and contains a deduced gene set of 2,521 coding sequences. Copyright © 2015 Calcutt and Foecking.

Read More »

Sunday, July 7, 2019

Genomic exploration of individual giant ocean viruses.

Viruses are major pathogens in all biological systems. Virus propagation and downstream analysis remains a challenge, particularly in the ocean where the majority of their microbial hosts remain recalcitrant to current culturing techniques. We used a cultivation-independent approach to isolate and sequence individual viruses. The protocol uses high-speed fluorescence-activated virus sorting flow cytometry, multiple displacement amplification (MDA), and downstream genomic sequencing. We focused on ‘giant viruses’ that are readily distinguishable by flow cytometry. From a single-milliliter sample of seawater collected from off the dock at Boothbay Harbor, ME, USA, we sorted almost 700 single virus particles, and subsequently focused on…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Acetobacter pomorum Oregon-R-modENCODE strain BDGP5, an acetic acid bacterium found in the Drosophila melanogaster gut.

Acetobacter pomorum Oregon-R-modENCODE strain BDGP5 was isolated from Drosophila melanogaster for functional host-microbe interaction studies. The complete genome is composed of a single chromosomal circle of 2,848,089 bp, with a G+C content of 53% and three plasmids of 131,455 bp, 19,216 bp, and 9,160 bp. Copyright © 2017 Wan et al.

Read More »

Sunday, July 7, 2019

Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus isolates PBTS 1 and PBTS 2.

Rhodococcus fascians, a phytopathogen that alters plant development, inflicts significant losses in plant production around the world. We report here the complete genome sequence of R. fascians D188, a well-characterized model isolate, and Rhodococcus species PBTS (pistachio bushy top syndrome) 1 and 2, which were shown to be responsible for a disease outbreak in pistachios. Copyright © 2016 Stamler et al.

Read More »

Subscribe for blog updates:

Archives