Menu
July 19, 2019  |  

Comparative genomics reveals the diversity of restriction-modification systems and DNA methylation sites in Listeria monocytogenes.

Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate’s epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism.Listeria monocytogenes is the causative agent of listeriosis, a disease which manifests as gastroenteritis, meningoencephalitis, and abortion. Among Salmonella, Escherichia coli, Campylobacter, and Listeria-causing the most prevalent foodborne illnesses-infection by L. monocytogenes carries the highest mortality rate. The ability of L. monocytogenes to regulate its response to various harsh environments enables its persistence and transmission. Small-scale comparisons of L. monocytogenes focusing solely on genome contents reveal a highly syntenic genome yet fail to address the observed diversity in phenotypic regulation. This study provides a large-scale comparison of 302 L. monocytogenes isolates, revealing the importance of the epigenome and restriction-modification systems as major determinants of L. monocytogenes phylogenetic grouping and subsequent phenotypic expression. Further examination of virulence genes of select outbreak strains reveals an unprecedented diversity in methylation statuses despite high degrees of genome conservation. Copyright © 2017 American Society for Microbiology.


July 19, 2019  |  

An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion.

Plasmodium cynomolgi, a non-human primate malaria parasite species, has been an important model parasite since its discovery in 1907. Similarities in the biology of P. cynomolgi to the closely related, but less tractable, human malaria parasite P. vivax make it the model parasite of choice for liver biology and vaccine studies pertinent to P. vivax malaria. Molecular and genome-scale studies of P. cynomolgi have relied on the current reference genome sequence, which remains highly fragmented with 1,649 unassigned scaffolds and little representation of the subtelomeres.  Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated a new reference genome sequence, PcyM, sourced from an Indian rhesus monkey. We compare the newly assembled genome sequence with those of several other Plasmodium species, including a re-annotated P. coatneyi assembly.The new PcyM genome assembly is of significantly higher quality than the existing reference, comprising only 56 pieces, no gaps and an improved average gene length. Detailed manual curation has ensured a comprehensive annotation of the genome with 6,632 genes, nearly 1,000 more than previously attributed to P. cynomolgi. The new assembly also has an improved representation of the subtelomeric regions, which account for nearly 40% of the sequence. Within the subtelomeres, we identified more than 1300 Plasmodium interspersed repeat ( pir) genes, as well as a striking expansion of 36 methyltransferase pseudogenes that originated from a single copy on chromosome 9.The manually curated PcyM reference genome sequence is an important new resource for the malaria research community. The high quality and contiguity of the data have enabled the discovery of a novel expansion of methyltransferase in the subtelomeres, and illustrates the new comparative genomics capabilities that are being unlocked by complete reference genomes.


July 7, 2019  |  

Exploring possible DNA structures in real-time polymerase kinetics using Pacific Biosciences sequencer data.

BackgroundPausing of DNA polymerase can indicate the presence of a DNA structure that differs from the canonical double-helix. Here we detail a method to investigate how polymerase pausing in the Pacific Biosciences sequencer reads can be related to DNA sequences. The Pacific Biosciences sequencer uses optics to view a polymerase and its interaction with a single DNA molecule in real-time, offering a unique way to detect potential alternative DNA structures.ResultsWe have developed a new way to examine polymerase kinetics data and relate it to the DNA sequence by using a wavelet transform of read information from the sequencer. We use this method to examine how polymerase kinetics are related to nucleotide base composition. We then examine tandem repeat sequences known for their ability to form different DNA structures: (CGG)n and (CG)n repeats which can, respectively, form G-quadruplex DNA and Z-DNA. We find pausing around the (CGG)n repeat that may indicate the presence of G-quadruplexes in some of the sequencer reads. The (CG)n repeat does not appear to cause polymerase pausing, but its kinetics signature nevertheless suggests the possibility that alternative nucleotide conformations may sometimes be present.ConclusionWe discuss the implications of using our method to discover DNA sequences capable of forming alternative structures. The analyses presented here can be reproduced on any Pacific Biosciences kinetics data for any DNA pattern of interest using an R package that we have made publicly available.


July 7, 2019  |  

Complete genome sequence of the Clostridium difficile laboratory strain 630¿ erm reveals differences from strain 630, including translocation of the mobile element CTn 5.

Background Clostridium difficile strain 630¿erm is a spontaneous erythromycin sensitive derivative of the reference strain 630 obtained by serial passaging in antibiotic-free media. It is widely used as a defined and tractable C. difficile strain. Though largely similar to the ancestral strain, it demonstrates phenotypic differences that might be the result of underlying genetic changes. Here, we performed a de novo assembly based on single-molecule real-time sequencing and an analysis of major methylation patterns.ResultsIn addition to single nucleotide polymorphisms and various indels, we found that the mobile element CTn5 is present in the gene encoding the methyltransferase rumA rather than adhesin CD1844 where it is located in the reference strain.ConclusionsTogether, the genetic features identified in this study may help to explain at least part of the phenotypic differences. The annotated genome sequence of this lab strain, including the first analysis of major methylation patterns, will be a valuable resource for genetic research on C. difficile.


July 7, 2019  |  

Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine.

Modified DNA bases in mammalian genomes, such as 5-methylcytosine ((5m)C) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of (5m)C to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like (5m)C oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both (5m)C (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine ((5f)U) and 5-carboxyuridine ((5ca)U) in vitro. Mutagenesis studies reveal a delicate balance between choice of (5m)C or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to (5m)CpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in (5m)C sequencing technologies such as single molecule, real-time sequencing to map (5m)C in bacterial genomes at base resolution.


July 7, 2019  |  

Complete genome sequence analysis of Bacillus subtilis T30.

The complete genome sequence of Bacillus subtilis T30 was determined by SMRT sequencing. The entire genome contains 4,138 predicted genes. The genome carries one intact prophage sequence (37.4 kb) similar to Bacillus phage SPBc2 and one incomplete prophage genome of 39.9 kb similar to Bacillus phage phi105. Copyright © 2015 Xu et al.


July 7, 2019  |  

Complete genome sequence of ER2796, a DNA methyltransferase-deficient strain of Escherichia coli K-12.

We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica subsp. enterica serovar Agona 460004 2-1, associated with a multistate outbreak in the United States.

Within the last several years, Salmonella enterica subsp. enterica serovar Agona has been among the 20 most frequently isolated serovars in clinical cases of salmonellosis. In this report, the complete genome sequence of S. Agona strain 460004 2-1 isolated from unsweetened puffed-rice cereal during a multistate outbreak in 2008 was sequenced using single-molecule real-time DNA sequencing. Copyright © 2015 Hoffmann et al.


July 7, 2019  |  

Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis.

Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ?metA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ?metA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ?metA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action.


July 7, 2019  |  

Complete genome sequence of enteroinvasive Escherichia coli O96:H19 associated with a severe foodborne outbreak.

We present here the complete genome sequence of a strain of enteroinvasive Escherichia coli O96:H19 from a severe foodborne outbreak in a canteen in Italy in 2014. The complete genome may provide important information about the acquired pathogenicity of this strain and the transition between commensal and pathogenic E. coli. Copyright © 2015 Pettengill et al.


July 7, 2019  |  

Insights on virulence from the complete genome of Staphylococcus capitis.

Staphylococcus capitis is an opportunistic pathogen of the coagulase negative staphylococci (CoNS). Functional genomic studies of S. capitis have thus far been limited by a lack of available complete genome sequences. Here, we determined the closed S. capitis genome and methylome using Single Molecule Real Time (SMRT) sequencing. The strain, AYP1020, harbors a single circular chromosome of 2.44 Mb encoding 2304 predicted proteins, which is the smallest of all complete staphylococcal genomes sequenced to date. AYP1020 harbors two large mobile genetic elements; a plasmid designated pAYP1020 (59.6 Kb) and a prophage, FAYP1020 (48.5 Kb). Methylome analysis identified significant adenine methylation across the genome involving two distinct methylation motifs (1972 putative 6-methyladenine (m6A) residues identified). Putative adenine methyltransferases were also identified. Comparative analysis of AYP1020 and the closely related CoNS, S. epidermidis RP62a, revealed a host of virulence factors that likely contribute to S. capitis pathogenicity, most notably genes important for biofilm formation and a suite of phenol soluble modulins (PSMs); the expression/production of these factors were corroborated by functional assays. The complete S. capitis genome will aid future studies on the evolution and pathogenesis of the coagulase negative staphylococci.


July 7, 2019  |  

Role of restriction-modification systems in prokaryotic evolution and ecology

Restriction–modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution of the specificity of R-M systems. This review focuses on the influence of R-M systems on evolution and ecology of prokaryotes.


July 7, 2019  |  

DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes?

DNA N(6)-adenine methylation (N(6)-methyladenine; 6mA) in prokaryotes functions primarily in the host defence system. The prevalence and significance of this modification in eukaryotes had been unclear until recently. Here, we discuss recent publications documenting the presence of 6mA in Chlamydomonas reinhardtii, Drosophila melanogaster and Caenorhabditis elegans; consider possible roles for this DNA modification in regulating transcription, the activity of transposable elements and transgenerational epigenetic inheritance; and propose 6mA as a new epigenetic mark in eukaryotes.


July 7, 2019  |  

SMRT sequencing of the Campylobacter coli BfR-CA-9557 genome sequence reveals unique methylation motifs.

Campylobacter species are the most prevalent bacterial pathogen causing acute enteritis worldwide. In contrast to Campylobacter jejuni, about 5 % of Campylobacter coli strains exhibit susceptibility to restriction endonuclease digestion by DpnI cutting specifically 5′-G(m)ATC-3′ motifs. This indicates significant differences in DNA methylation between both microbial species. The goal of the study was to analyze the methylome of a C. coli strain susceptible to DpnI digestion, to identify its methylation motifs and restriction modification systems (RM-systems), and compare them to related organisms like C. jejuni and Helicobacter pylori. Using one SMRT cell and the PacBio RS sequencing technology followed by PacBio Modification and Motif Analysis the complete genome of the DpnI susceptible strain C. coli BfR-CA-9557 was sequenced to 500-fold coverage and assembled into a single contig of 1.7 Mbp. The genome contains a CJIE1-like element prophage and is phylogenetically closer to C. coli clade 1 isolates than clade 3. 45,881 6-methylated adenines (ca. 2.7 % of genome positions) that are predominantly arranged in eight different methylation motifs and 1,788 4-methylated cytosines (ca. 0.1 %) have been detected. Only two of these motifs correspond to known restriction modification motifs. Characteristic for this methylome was the very high fraction of methylation of motifs with mostly above 99 %.Only five dominant methylation motifs have been identified in C. jejuni, which have been associated with known RM-systems. C. coli BFR-CA-9557 shares one (RAATTY) of these, but four ORFs could be assigned to putative Type I RM-systems, seven ORFs to Type II RM-systems and three ORFs to Type IV RM-systems. In accordance with DpnI prescreening RM-system IIP, methylation of GATC motifs was detected in C. coli BfR-CA-9557. A homologous IIP RM-system has been described for H. pylori. The remaining methylation motifs are specific for C. coli BfR-CA-9557 and have been neither detected in C. jejuni nor in H. pylori. The results of this study give us new insights into epigenetics of Campylobacteraceae and provide the groundwork to resolve the function of RM-systems in C. coli.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.