July 19, 2019  |  

Mechanisms of evolution in high-consequence drug resistance plasmids.

The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance.The spread of antibiotic resistance among Gram-negative bacteria is a serious public health threat, as it can critically limit the types of drugs that can be used to treat infected patients. In particular, carbapenem-resistant members of the Enterobacteriaceae family are responsible for a significant and growing burden of morbidity and mortality. Here, we report on the mechanisms underlying the evolution of several plasmids carried by previously sequenced clinical Enterobacteriaceae isolates from the National Institutes of Health Clinical Center (NIH CC). Our ability to track genetic rearrangements that occurred within resistance plasmids was dependent on accurate annotation of the mobile genetic elements within the plasmids, which was greatly aided by access to long-read DNA sequencing data and knowledge of their mechanisms. Mobile genetic elements such as transposons and integrons have been strongly associated with the rapid spread of genes responsible for antibiotic resistance. Understanding the consequences of their actions allowed us to establish unambiguous evolutionary relationships between plasmids in the analysis set. Copyright © 2016 He et al.


July 7, 2019  |  

Extensive mobilome-driven genome diversification in mouse gut-associated Bacteroides vulgatus mpk.

Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota.


July 7, 2019  |  

Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102.

Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture.The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90.Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.