July 19, 2019  |  

Contrasting evolutionary genome dynamics between domesticated and wild yeasts.

Structural rearrangements have long been recognized as an important source of genetic variation, with implications in phenotypic diversity and disease, yet their detailed evolutionary dynamics remain elusive. Here we use long-read sequencing to generate end-to-end genome assemblies for 12 strains representing major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus. These population-level high-quality genomes with comprehensive annotation enable precise definition of chromosomal boundaries between cores and subtelomeres and a high-resolution view of evolutionary genome dynamics. In chromosomal cores, S. paradoxus shows faster accumulation of balanced rearrangements (inversions, reciprocal translocations and transpositions), whereas S. cerevisiae accumulates unbalanced rearrangements (novel insertions, deletions and duplications) more rapidly. In subtelomeres, both species show extensive interchromosomal reshuffling, with a higher tempo in S. cerevisiae. Such striking contrasts between wild and domesticated yeasts are likely to reflect the influence of human activities on structural genome evolution.


July 7, 2019  |  

Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini–review

The rhizosphere (soil zone influenced by roots) is a complex environment that harbors diverse bacterial populations, which have an important role in biogeochemical cycling of organic matter and mineral nutrients. Nevertheless, our knowledge of the ecology and role of these bacteria in the rhizosphere is very limited, particularly regarding how indigenous bacteria are able to communicate, colonize root environments, and compete along the rhizosphere microsites. In recent decades, the development and improvement of molecular techniques have provided more accurate knowledge of bacteria in their natural environment, refining microbial ecology and generating new questions about the roles and functions of bacteria in the rhizosphere. Recently, advances in soil post?genomic techniques (metagenomics, metaproteomics and metatranscriptomics) are being applied to improve our understanding of the microbial communities at a higher resolution. Moreover, advantages and limitations of classical and post?genomic techniques must be considered when studying bacteria in the rhizosphere. This review provides an overview of the current knowledge on the study of bacterial community in the rhizosphere by using modern molecular techniques, describing the bias of classical molecular techniques, next generation sequencing platforms and post?genomics techniques.


July 7, 2019  |  

Complete genome sequence of Staphylococcus epidermidis 1457.

Staphylococcus epidermidis 1457 is a frequently utilized strain that is amenable to genetic manipulation and has been widely used for biofilm-related research. We report here the whole-genome sequence of this strain, which encodes 2,277 protein-coding genes and 81 RNAs within its 2.4-Mb genome and plasmid. Copyright © 2017 Galac et al.


July 7, 2019  |  

A highly arginolytic Streptococcus species that potently antagonizes Streptococcus mutans.

The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of Halocynthiibacter arcticus PAMC 20958(T) from an Arctic marine sediment sample.

Here, we present the first complete genome sequence of the strain PAMC 20958(T) from the genus Halocynthiibacter. Halocynthiibacter arcticus PAMC 20958(T), isolated from a marine sediment of the Arctic, is a gram-negative, aerobic, and rod-shaped bacterium. The complete genome contains 4,329,554 base pairs with 53.21% GC content and a 44,566 base pair plasmid with 48.72% GC content. This genome contained genes encoding alkaline phosphatase and lipase, and genes that confer resistance to arsenic, cadmium, tellurite, and acriflavin. Copyright © 2016 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.