Menu
July 19, 2019  |  

Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population.

Chemosynthetic symbiosis is one of the successful systems for adapting to a wide range of habitats including extreme environments, and the metabolic capabilities of symbionts enable host organisms to expand their habitat ranges. However, our understanding of the adaptive strategies that enable symbiotic organisms to expand their habitats is still fragmentary. Here, we report that a single-ribotype endosymbiont population in an individual of the host vent mussel, Bathymodiolus septemdierum has heterogeneous genomes with regard to the composition of key metabolic gene clusters for hydrogen oxidation and nitrate reduction. The host individual harbours heterogeneous symbiont subpopulations that either possess or lack the gene clusters encoding hydrogenase or nitrate reductase. The proportions of the different symbiont subpopulations in a host appeared to vary with the environment or with the host’s development. Furthermore, the symbiont subpopulations were distributed in patches to form a mosaic pattern in the gill. Genomic heterogeneity in an endosymbiont population may enable differential utilization of diverse substrates and confer metabolic flexibility. Our findings open a new chapter in our understanding of how symbiotic organisms alter their metabolic capabilities and expand their range of habitats.


July 19, 2019  |  

Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei.

Marine natural products are an important source of lead compounds against many pathogenic targets. Herein, we report the discovery of lobosamides A-C from a marine actinobacterium, Micromonospora sp., representing three new members of a small but growing family of bacterially produced polyene macrolactams. The lobosamides display growth inhibitory activity against the protozoan parasite Trypanosoma brucei (lobosamide A IC50 = 0.8 µM), the causative agent of human African trypanosomiasis (HAT). The biosynthetic gene cluster of the lobosamides was sequenced and suggests a conserved cluster organization among the 26-membered macrolactams. While determination of the relative and absolute configurations of many members of this family is lacking, the absolute configurations of the lobosamides were deduced using a combination of chemical modification, detailed spectroscopic analysis, and bioinformatics. We implemented a “molecules-to-genes-to-molecules” approach to determine the prevalence of similar clusters in other bacteria, which led to the discovery of two additional macrolactams, mirilactams A and B from Actinosynnema mirum. These additional analogs have allowed us to identify specific structure-activity relationships that contribute to the antitrypanosomal activity of this class. This approach illustrates the power of combining chemical analysis and genomics in the discovery and characterization of natural products as new lead compounds for neglected disease targets.


July 7, 2019  |  

Complete genome of Jeotgalibacillus malaysiensis D5(T) consisting of a chromosome and a circular megaplasmid.

Jeotgalibacillus spp. are halophilic bacteria within the family Planococcaceae. No genomes of Jeotgalibacillus spp. have been reported to date, and their metabolic pathways are unknown. How the bacteria survive in hypertonic conditions such as seawater is yet to be discovered. As only few studies have been conducted on Jeotgalibacillus spp., potential applications of these bacteria are unknown. Here, we present the complete genome of J. malaysiensis D5(T) (=DSM 28777(T) =KCTC 33350(T)), which is invaluable in identifying interesting applications for this genus. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339(T).

Muricauda lutaonensis KCTC 22339(T) is a yellow-pigmented, gram-negative, rod-shaped bacterium that was isolated from a coastal hot spring of a volcanic island in the Pacific Ocean, off the eastern coast of Taiwan. We here report the complete genome of M. lutaonensis KCTC 22339(T), which consists of 3,274,259bp with the G+C content of 44.97%. The completion of the M. lutaonensis genome sequence is expected to provide a valuable resource for understanding the secondary metabolic pathways related to bacterial pigmentation. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome of Kangiella geojedonensis KCTC 23420(T), putative evidence for recent genome reduction in marine environments.

Kangiella geojedonensis KCTC 23420(T) is an aerobic, Gram-negative, non-motile, non-spore-forming, rod-shaped bacterium that was isolated from seawater off the southern coast of Korea. We here report the complete genome of K. geojedonensis KCTC 23420(T), which consists of 2,495,242 bp (G+C content of 43.78%) with 2,257 protein-coding genes, 41 tRNAs, 2 rRNA operons. The genome is smaller than the other closely related genomes, indicating that K. geojedonensis has recently experienced reductive evolution. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genome sequence of Halomonas sp. strain KO116, an ionic liquid-tolerant marine bacterium isolated from a lignin-enriched seawater microcosm.

Halomonas sp. strain KO116 was isolated from Nile Delta Mediterranean Sea surface water enriched with insoluble organosolv lignin. It was further screened for growth on alkali lignin minimal salts medium agar. The strain tolerates the ionic liquid 1-ethyl-3-methylimidazolium acetate. Its complete genome sequence is presented in this report. Copyright © 2015 O’Dell et al.


July 7, 2019  |  

Complete genome of the marine bacterium Wenzhouxiangella marina KCTC 42284(T).

Wenzhouxiangella marina is an obligatory aerobic, Gram-negative, non-motile, rod-shaped bacterium that was isolated from the culture broth of marine microalgae, Picochlorum sp. 122. Here we report the 3.67 MB complete genome (65.26 G+C%) of W. marina KCTC 42284(T) encoding 3,016 protein-coding genes, 43 tRNAs and one rRNA operon. The genomic information supports multiple horizontal gene transfer (HGT) events in the history of W. marina, possibly with other marine bacteria co-existing in marine habitats. Evaluation of genomic signatures revealed 19 such HGT-derived genomic islands. Of these, eight were also supported by “genomic context” that refers to the existence of integrases, transposases and tmRNA genes either inside or in near vicinity to the island. The addition of W. marina genome expands the repertoire of marine bacterial genomic diversity, especially because the strain represents the sole genomic resource of a novel taxonomic family in the bacterial order Chromatiales. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genome sequence of “Candidatus Thioglobus autotrophica” Strain EF1, a chemoautotroph from the SUP05 clade of marine gammaproteobacteria.

Chemoautotrophic marine bacteria from the SUP05 clade of marine gammaproteobacteria often dominate low-oxygen waters in upwelling regions, fjords, and hydrothermal systems. Here, we announce the complete genome sequence of “Candidatus Thioglobus autotrophica” strain EF1, the first cultured chemoautotrophic representative from the SUP05 clade. Copyright © 2015 Shah and Morris.


July 7, 2019  |  

Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium.

Marine oxygen minimum zones (OMZs) are expanding regions of intense nitrogen cycling. Up to half of the nitrogen available for marine organisms is removed from the ocean in these regions. Metagenomic studies have identified an abundant group of sulfur-oxidizing bacteria (SUP05) with the genetic potential for nitrogen cycling and loss in OMZs. However, SUP05 have defied cultivation and their physiology remains untested. We cultured, sequenced and tested the physiology of an isolate from the SUP05 clade. We describe a facultatively anaerobic sulfur-oxidizing chemolithoautotroph that produces nitrite and consumes ammonium under anaerobic conditions. Genetic evidence that closely related strains are abundant at nitrite maxima in OMZs suggests that sulfur-oxidizing chemoautotrophs from the SUP05 clade are a potential source of nitrite, fueling competing nitrogen removal processes in the ocean.


July 7, 2019  |  

Complete genome of brown algal polysaccharides-degrading Pseudoalteromonas issachenkonii KCTC 12958(T) (=KMM 3549(T)).

Pseudoalteromonas issachenkonii is a Gram-negative, rod-shaped, flagellated, aerobic, chemoorganotrophic marine bacterium that was isolated from the thallus of Fucus evanescens (marine brown macroalgae) sampled from the Kraternaya Bight of the Kurile Islands in the Pacific Ocean. Here, we report the complete genome of P. issachenkonii KCTC 12958(T) (=KMM 3549(T)=LMG 19697(T)=CIP 106858(T)), which consists of 4,131,541bp (G+C content of 40.3%) with two chromosomes, 3538 protein-coding genes, 102 tRNAs and 8 rRNA operons. Several genes related to glycoside hydrolases, proteases, and bacteriolytic- and hemolytic activities were detected in the genome that help explain how the strain mediates degradation of algal cell wall and decomposes algal polysaccharides into industrially applicable products. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of cold-adapted enzyme producing Microbulbifer thermotolerans DAU221.

Microbulbifer thermotolerans DAU221 was preliminary isolated from the marine sediment samples in the Republic of Korea. Here, we present the complete genome sequence of M. thermotolerans DAU221, which consisted of 3,938,396 base pairs with a GC content of 56.57%. This genomic information should help us find the industrially useful enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.