Menu
September 22, 2019  |  

A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility.

Unilateral cross-incompatibility (UCI) is a unidirectional inter/intra-population reproductive barrier when both parents are self-compatible. Maize Gametophyte factor1 (Ga1) is an intraspecific UCI system and has been utilized in breeding. However, the mechanism underlying maize UCI specificity has remained mysterious for decades. Here, we report the cloning of ZmGa1P, a pollen-expressed PECTIN METHYLESTERASE (PME) gene at the Ga1 locus that can confer the male function in the maize UCI system. Homozygous transgenic plants expressing ZmGa1P in a ga1 background can fertilize Ga1-S plants and can be fertilized by pollen of ga1 plants. ZmGa1P protein is predominantly localized to the apex of growing pollen tubes and may interact with another pollen-specific PME protein, ZmPME10-1, to maintain the state of pectin methylesterification required for pollen tube growth in Ga1-S silks. Our study discloses a PME-mediated UCI mechanism and provides a tool to manipulate hybrid breeding.


July 19, 2019  |  

Aluminum tolerance in maize is associated with higher MATE1 gene copy number.

Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.


July 19, 2019  |  

Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads.

Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41-48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups.


July 19, 2019  |  

Long read sequencing technology to solve complex genomic regions assembly in plants

Background: Numerous completed or on-going whole genome sequencing projects have highlighted the fact that obtaining a high quality genome sequence is necessary to address comparative genomics questions such as structural variations among genotypes and gain or loss of specific function. Despite the spectacular progress that has been made in sequencing technologies, obtaining accurate and reliable data is still a challenge, both at the whole genome scale and when targeting specific genomic regions. These problems are even more noticeable for complex plant genomes. Most plant genomes are known to be particularly challenging due to their size, high density of repetitive elements and various levels of ploidy. To overcome these problems, we have developed a strategy to reduce genome complexity by using the large insert BAC libraries combined with next generation sequencing technologies. Results: We compared two different technologies (Roche-454 and Pacific Biosciences PacBio RS II) to sequence pools of BAC clones in order to obtain the best quality sequence. We targeted nine BAC clones from different species (maize, wheat, strawberry, barley, sugarcane and sunflower) known to be complex in terms of sequence assembly. We sequenced the pools of the nine BAC clones with both technologies. We compared assembly results and highlighted differences due to the sequencing technologies used. Conclusions: We demonstrated that the long reads obtained with the PacBio RS II technology serve to obtain a better and more reliable assembly, notably by preventing errors due to duplicated or repetitive sequences in the same region.


July 19, 2019  |  

Improved maize reference genome with single-molecule technologies.

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


July 19, 2019  |  

New technologies boost genome quality.

Three years ago, Erich Jarvis helped mastermind a massive DNA sequenc- ing effort that netted genomes for more than 40 bird species and produced a better avian family tree. But when he tried to compare the avian genomes to those of other species to learn about the evolution and function of several key brain genes, he was stymied. His team found that gene sequences from most of the comparison species—even humans—were incomplete, missing, or misplaced in the larger genome. The group had to resequence sections of sev- eral genomes to get the needed data, delaying their project many months.


July 19, 2019  |  

ALF: a strategy for identification of unauthorized GMOs in complex mixtures by a GW-NGS method and dedicated bioinformatics analysis.

The majority of feed products in industrialised countries contains materials derived from genetically modified organisms (GMOs). In parallel, the number of reports of unauthorised GMOs (UGMOs) is gradually increasing. There is a lack of specific detection methods for UGMOs, due to the absence of detailed sequence information and reference materials. In this research, an adapted genome walking approach was developed, called ALF: Amplification of Linearly-enriched Fragments. Coupling of ALF to NGS aims for simultaneous detection and identification of all GMOs, including UGMOs, in one sample, in a single analysis. The ALF approach was assessed on a mixture made of DNA extracts from four reference materials, in an uneven distribution, mimicking a real life situation. The complete insert and genomic flanking regions were known for three of the included GMO events, while for MON15985 only partial sequence information was available. Combined with a known organisation of elements, this GMO served as a model for a UGMO. We successfully identified sequences matching with this organisation of elements serving as proof of principle for ALF as new UGMO detection strategy. Additionally, this study provides a first outline of an automated, web-based analysis pipeline for identification of UGMOs containing known GM elements.


July 19, 2019  |  

Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes.

Maize is an important crop with a high level of genome diversity and heterosis. The genome sequence of a typical female line, B73, was previously released. Here, we report a de novo genome assembly of a corresponding male representative line, Mo17. More than 96.4% of the 2,183?Mb assembled genome can be accounted for by 362 scaffolds in ten pseudochromosomes with 38,620 annotated protein-coding genes. Comparative analysis revealed large gene-order and gene structural variations: approximately 10% of the annotated genes were mutually nonsyntenic, and more than 20% of the predicted genes had either large-effect mutations or large structural variations, which might cause considerable protein divergence between the two inbred lines. Our study provides a high-quality reference-genome sequence of an important maize germplasm, and the intraspecific gene order and gene structural variations identified should have implications for heterosis and genome evolution.


July 19, 2019  |  

The Dominant and Poorly Penetrant Phenotypes of Maize Unstable factor for orange1 Are Caused by DNA Methylation Changes at a Linked Transposon.

The maize (Zea mays) mutant Unstable factor for orange1 (Ufo1) has been implicated in the epigenetic modifications of pericarp color1 (p1), which regulates the production of the flavonoid pigments phlobaphenes. Here, we show that the ufo1 gene maps to a genetically recalcitrant region near the centromere of chromosome 10. Transcriptome analysis of Ufo1-1 mutant and wild-type plants identified a candidate gene in the mapping region using a comparative sequence-based approach. The candidate gene, GRMZM2G053177, is overexpressed by >45-fold in multiple tissues of Ufo1-1, explaining the dominance of Ufo1-1 and its phenotypes. In the mutant stock, GRMZM2G053177 has a unique transcript originating within a CACTA transposon inserted in its first intron, and it is missing the first four codons of the wild-type transcript. GRMZM2G053177 expression is regulated by the DNA methylation status of the CACTA transposon, explaining the incomplete penetrance and poor expressivity of Ufo1-1 Transgenic overexpression lines of GRMZM2G053177 (Ufo1-1) phenocopy the p1-induced pigmentation in coleoptiles, tassels, leaf sheaths, husks, pericarps, and cob glumes. Transcriptome analysis of Ufo1 versus wild-type tissues revealed changes in several pathways related to abiotic and biotic stress. Thus, this study addresses the enigma of Ufo1 identity in maize, which had gone unsolved for more than 50 years.© 2018 American Society of Plant Biologists. All rights reserved.


July 7, 2019  |  

Diversity and evolution of centromere repeats in the maize genome.

Centromere repeats are found in most eukaryotes and play a critical role in kinetochore formation. Though centromere repeats exhibit considerable diversity both within and among species, little is understood about the mechanisms that drive centromere repeat evolution. Here, we use maize as a model to investigate how a complex history involving polyploidy, fractionation, and recent domestication has impacted the diversity of the maize centromeric repeat CentC. We first validate the existence of long tandem arrays of repeats in maize and other taxa in the genus Zea. Although we find considerable sequence diversity among CentC copies genome-wide, genetic similarity among repeats is highest within these arrays, suggesting that tandem duplications are the primary mechanism for the generation of new copies. Nonetheless, clustering analyses identify similar sequences among distant repeats, and simulations suggest that this pattern may be due to homoplasious mutation. Although the two ancestral subgenomes of maize have contributed nearly equal numbers of centromeres, our analysis shows that the majority of all CentC repeats derive from one of the parental genomes, with an even stronger bias when examining the largest assembled contiguous clusters. Finally, by comparing maize with its wild progenitor teosinte, we find that the abundance of CentC likely decreased after domestication, while the pericentromeric repeat Cent4 has drastically increased.


July 7, 2019  |  

ThermoAlign: a genome-aware primer design tool for tiled amplicon resequencing.

Isolating and sequencing specific regions in a genome is a cornerstone of molecular biology. This has been facilitated by computationally encoding the thermodynamics of DNA hybridization for automated design of hybridization and priming oligonucleotides. However, the repetitive composition of genomes challenges the identification of target-specific oligonucleotides, which limits genetics and genomics research on many species. Here, a tool called ThermoAlign was developed that ensures the design of target-specific primer pairs for DNA amplification. This is achieved by evaluating the thermodynamics of hybridization for full-length oligonucleotide-template alignments – thermoalignments – across the genome to identify primers predicted to bind specifically to the target site. For amplification-based resequencing of regions that cannot be amplified by a single primer pair, a directed graph analysis method is used to identify minimum amplicon tiling paths. Laboratory validation by standard and long-range polymerase chain reaction and amplicon resequencing with maize, one of the most repetitive genomes sequenced to date (˜85% repeat content), demonstrated the specificity-by-design functionality of ThermoAlign. ThermoAlign is released under an open source license and bundled in a dependency-free container for wide distribution. It is anticipated that this tool will facilitate multiple applications in genetics and genomics and be useful in the workflow of high-throughput targeted resequencing studies.


July 7, 2019  |  

Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize.

Gynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene NOT LIKE DAD (NLD) coding for a patatin-like phospholipase A. In all surveyed inducer lines, NLD carries a 4-bp insertion leading to a predicted truncated protein. This frameshift mutation is responsible for haploid induction because complementation with wild-type NLD abolishes the haploid induction capacity. Activity of the NLD promoter is restricted to mature pollen and pollen tube. The translational NLD::citrine fusion protein likely localizes to the sperm cell plasma membrane. In Arabidopsis roots, the truncated protein is no longer localized to the plasma membrane, contrary to the wild-type NLD protein. In conclusion, an intact pollen-specific phospholipase is required for successful sexual reproduction and its targeted disruption may allow establishing powerful haploid breeding tools in numerous crops.© 2017 The Authors.


July 7, 2019  |  

Maize defective kernel mutant generated by insertion of a Ds element in a gene encoding a highly conserved TTI2 cochaperone.

We have used the newly engineered transposable element Dsg to tag a gene that gives rise to a defective kernel (dek) phenotype. Dsg requires the autonomous element Ac for transposition. Upon excision, it leaves a short DNA footprint that can create in-frame and frameshift insertions in coding sequences. Therefore, we could create alleles of the tagged gene that confirmed causation of the dek phenotype by the Dsg insertion. The mutation, designated dek38-Dsg, is embryonic lethal, has a defective basal endosperm transfer (BETL) layer, and results in a smaller seed with highly underdeveloped endosperm. The maize dek38 gene encodes a TTI2 (Tel2-interacting protein 2) molecular cochaperone. In yeast and mammals, TTI2 associates with two other cochaperones, TEL2 (Telomere maintenance 2) and TTI1 (Tel2-interacting protein 1), to form the triple T complex that regulates DNA damage response. Therefore, we cloned the maize Tel2 and Tti1 homologs and showed that TEL2 can interact with both TTI1 and TTI2 in yeast two-hybrid assays. The three proteins regulate the cellular levels of phosphatidylinositol 3-kinase-related kinases (PIKKs) and localize to the cytoplasm and the nucleus, consistent with known subcellular locations of PIKKs. dek38-Dsg displays reduced pollen transmission, indicating TTI2’s importance in male reproductive cell development.


July 7, 2019  |  

Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis.

Stenocarpella maydis is a plant pathogenic fungus that causes Diplodia ear rot, one of the most destructive diseases of maize. To date, little information is available regarding the molecular basis of pathogenesis in this organism, in part due to limited genomic resources. In this study, a 54.8 Mb draft genome assembly of S. maydis was obtained with Illumina and PacBio sequencing technologies, and analyzed. Comparative genomic analyses with the predominant maize ear rot pathogens Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum revealed an expanded set of carbohydrate-active enzymes for cellulose and hemicellulose degradation in S. maydis. Analyses of predicted genes involved in starch degradation revealed six putative a-amylases, four extracellular and two intracellular, and two putative ?-amylases, one of which appears to have been acquired from bacteria via horizontal transfer. Additionally, 87 backbone genes involved in secondary metabolism were identified, which represents one of the largest known assemblages among Pezizomycotina species. Numerous secondary metabolite gene clusters were identified, including two clusters likely involved in the biosynthesis of diplodiatoxin and chaetoglobosins. The draft genome of S. maydis presented here will serve as a useful resource for molecular genetics, functional genomics, and analyses of population diversity in this organism. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.