Menu
July 7, 2019  |  

Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana.

Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5?% of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.


July 7, 2019  |  

Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts.

Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73?kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25?kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid-host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts.© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria.

Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.


July 7, 2019  |  

Genomic studies of nitrogen-fixing rhizobial strains from Phaseolus vulgaris seeds and nodules.

Rhizobia are soil bacteria that establish symbiotic relationships with legumes and fix nitrogen in root nodules. We recently reported that several nitrogen-fixing rhizobial strains, belonging to Rhizobium phaseoli, R. trifolii, R. grahamii and Sinorhizobium americanum, were able to colonize Phaseolus vulgaris (common bean) seeds. To gain further insight into the traits that support this ability, we analyzed the genomic sequences and proteomes of R. phaseoli (CCGM1) and S. americanum (CCGM7) strains from seeds and compared them with those of the closely related strains CIAT652 and CFNEI73, respectively, isolated only from nodules.In a fine structural study of the S. americanum genomes, the chromosomes, megaplasmids and symbiotic plasmids were highly conserved and syntenic, with the exception of the smaller plasmid, which appeared unrelated. The symbiotic tract of CCGM7 appeared more disperse, possibly due to the action of transposases. The chromosomes of seed strains had less transposases and strain-specific genes. The seed strains CCGM1 and CCGM7 shared about half of their genomes with their closest strains (3353 and 3472 orthologs respectively), but a large fraction of the rest also had homology with other rhizobia. They contained 315 and 204 strain-specific genes, respectively, particularly abundant in the functions of transcription, motility, energy generation and cofactor biosynthesis. The proteomes of seed and nodule strains were obtained and showed a particular profile for each of the strains. About 82 % of the proteins in the comparisons appeared similar. Forty of the most abundant proteins in each strain were identified; these proteins in seed strains were involved in stress responses and coenzyme and cofactor biosynthesis and in the nodule strains mainly in central processes. Only 3 % of the abundant proteins had hypothetical functions.Functions that were enriched in the genomes and proteomes of seed strains possibly participate in the successful occupancy of the new niche. The genome of the strains had features possibly related to their presence in the seeds. This study helps to understand traits of rhizobia involved in seed adaptation.


July 7, 2019  |  

Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the cochineal insect Dactylopius coccus (Hemiptera: Dactylopiidae).

Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA. Copyright © 2016 Ramírez-Puebla et al.


July 7, 2019  |  

Aerobic H2 respiration enhances metabolic flexibility of methanotrophic bacteria

Methanotrophic bacteria are important soil biofilters for the climate-active gas methane. The prevailing opinion is that these bacteria exclusively metabolise single-carbon, and in limited instances, short-chain hydrocarbons for growth. This specialist lifestyle juxtaposes metabolic flexibility, a key strategy for environmental adaptation of microorganisms. Here we show that a methanotrophic bacterium from the phylum Verrucomicrobia oxidises hydrogen gas (H2) during growth and persistence. Methylacidiphilum sp. RTK17.1 expresses a membrane-bound hydrogenase to aerobically respire molecular H2 at environmentally significant concentrations. While H2 oxidation did not support growth as the sole electron source, it significantly enhanced mixotrophic growth yields under both oxygen-replete and oxygen-limiting conditions and was sustained in non-growing cultures starved for methane. We propose that H2 is consumed by this bacterium for mixotrophic growth and persistence in a manner similar to other non-methanotrophic soil microorganisms. We have identified genes encoding oxygen-tolerant uptake hydrogenases in all publicly-available methanotroph genomes, suggesting that H2 oxidation serves a general strategy for methanotrophs to remain energised in chemically-limited environments.


July 7, 2019  |  

Genomic insights into Photobacterium damselae subsp. damselae strain KC-Na-1, isolated from the finless porpoise (Neophocaena asiaeorientalis)

Photobacterium damselae subsp. damselae (PDD) is a marine bacterium that can infect a variety of marine animals and humans. Although this bacterium has been isolated from several stranded dolphins and whales, its pathogenic role in cetaceans is still unclear. In this study, we report the complete genome of PDD strain KC-Na-1 isolated from a finless porpoise (Neophocaena asiaeorientalis) rescued from the South Sea (Republic of Korea). The sequenced genome comprised two chromosomes and four plasmids. Among the recently identified major virulence factors in PDD, only phospholipase (plpV) was found in strain KC-Na-1. Interestingly, two genes homologous to Vibrio thermostable direct hemolysin (tdh) and its transcriptional regulator toxR, which are known virulence factors associated with Vibrio parahaemolyticus, were encoded on the plasmid pPDD-Na-1-3. Based on these results, strain KC-Na-1 may have potential pathogenicity in humans and other marine animals and also could act as a potential virulent strain. To the best of our knowledge, this is the first report of the complete genome sequence of P. damselae.


July 7, 2019  |  

Complete genome sequence of Planococcus faecalis AJ003T, the type species of the genus Planococcus and a microbial C30 carotenoid producer.

A novel type strain, Planococcus faecalis AJ003T, isolated from the feces of Antarctic penguins, synthesizes a rare C30 carotenoid, glycosyl-4,4′-diaponeurosporen-4′-ol-4-oic acid. The complete genome of P. faecalis AJ003Tcomprises a single circular chromosome (3,495,892?bp; 40.9% G?+?C content). Annotation analysis has revealed 3511 coding DNA sequences and 99 RNAs; seven genes associated with the MEP pathway and five genes involved in the carotenoid pathway have been identified. The functionality and complementation of 4,4′-diapophytoene synthase (CrtM) and two copies of heterologous 4,4′-diapophytoene desaturase (CrtN) involved in carotenoid biosynthesis were analyzed in Escherichia coli. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Flavobacterium kingsejongi WV39, a type species of the genus Flavobacterium and a microbial C40 carotenoid zeaxanthin producer.

A novel species, Flavobacterium kingsejongi WV39, isolated from feces of Antarctic penguins and a type species of the genus Flavobacterium, is yellow because it synthesizes a C40 carotenoid zeaxanthin. The complete genome of F. kingsejongi WV39 is made up of a single circular chromosome (4,224,053bp, 39.8% G+C content). Annotation analysis revealed 3,955 coding sequences, 72 RNAs (18 rRNA+54 tRNA), and five genes involved in zeaxanthin biosynthesis. The key gene encoding ß-carotenoid hydroxylase (CrtZ), which is the last enzyme in the zeaxanthin biosynthetic pathway, was cloned and subjected to complementary analysis in a heterologous E. coli strain. The CrtZ of F. kingsejongi WV39 showed a higher activity than other reported CrtZs. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Lacinutrix venerupis DOK2-8 isolated from marine sediment from the East Sea, Republic of Korea.

Lacinutrix venerupis has recently been considered a potential fish pathogen. Here, we report the complete genome sequence of L. venerupis DOK2-8, which possesses several virulence-related genes. This strain may be potentially virulent to other marine organisms, and its genomic information will provide important insights into the biodiversity of the genus Lacinutrix. Copyright © 2018 Lim et al.


July 7, 2019  |  

Complete genome sequence of the halophile bacterium Kushneria marisflavi KCCM 80003T, isolated from seawater in Korea

We present the genome sequence of Kushneria marisflavi KCCM 80003T isolated from Yellow Sea in Korea. The complete genome of KCCM 80003T consisted of a single, circular chromosome of 3,667,185bp, with an average G+C content of 59.05%, and 3287 coding sequences, 12 rRNAs, and 66 tRNAs. Kushneria marisflavi KCCM 80003T, belonging to the family Halomonadaceae, exhibited resistance to high salt concentrations and possessed potassium metabolism- or osmotic stress-related coding sequences, including potassium homeostasis, ectoine biosynthesis and regulation, choline and betaine uptake, and betaine biosynthesis features in the genome. These results provide a basis for understanding resistance strategies to osmotic stress at the genetic level and accordingly have implications for genetic engineering and biotechnology.


July 7, 2019  |  

Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano.

The Salar de Huasco is an evaporitic basin located in the Chilean Altiplano, which presents extreme environmental conditions for life, i.e. high altitude (3800 m.a.s.l.), negative water balance, a wide salinity range, high daily temperature changes and the occurrence of the highest registered solar radiation on the planet (>?1200 W m-2). This ecosystem is considered as a natural laboratory to understand different adaptations of microorganisms to extreme conditions. Rhodobacter, an anoxygenic aerobic phototrophic bacterial genus, represents one of the most abundant groups reported based on taxonomic diversity surveys in this ecosystem. The bacterial mat isolate Rhodobacter sp. strain Rb3 was used to study adaptation mechanisms to stress-inducing factors potentially explaining its success in a polyextreme ecosystem. We found that the Rhodobacter sp. Rb3 genome was characterized by a high abundance of genes involved in stress tolerance and adaptation strategies, among which DNA repair and oxidative stress were the most conspicuous. Moreover, many other molecular mechanisms associated with oxidative stress, photooxidation and antioxidants; DNA repair and protection; motility, chemotaxis and biofilm synthesis; osmotic stress, metal, metalloid and toxic anions resistance; antimicrobial resistance and multidrug pumps; sporulation; cold shock and heat shock stress; mobile genetic elements and toxin-antitoxin system were detected and identified as potential survival mechanism features in Rhodobacter sp. Rb3. In total, these results reveal a wide set of strategies used by the isolate to adapt and thrive under environmental stress conditions as a model of polyextreme environmental resistome.


July 7, 2019  |  

Complete genome sequence of Lactobacillus plantarum subsp. plantarum strain LB1-2, Iiolated from the hindgut of European honeybees, Apis mellifera L., from the Philippines.

Lactobacillus plantarum subsp. plantarum strain LB1-2, isolated from the hindgut of European honeybees in the Philippines, is active against Paenibacillus larvae and has broad activity against several Gram-positive and Gram-negative bacteria. The complete genome sequence reported herein contains gene clusters for multiple bacteriocins and extensive gene inventories for carbohydrate metabolism. Copyright © 2018 Ilagan-Cruzada et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.