Menu
July 7, 2019  |  

Complete genome sequence of Actinobacillus equuli subspecies equuli ATCC 19392(T).

Actinobacillus equuli subsp. equuli is a member of the family Pasteurellaceae that is a common resident of the oral cavity and alimentary tract of healthy horses. At the same time, it can also cause a fatal septicemia in foals, commonly known as sleepy foal disease or joint ill disease. In addition, A. equuli subsp. equuli has recently been reported to act as a primary pathogen in breeding sows and piglets. To better understand how A. equuli subsp. equuli can cause disease, the genome of the type strain of A. equuli subsp. equuli, ATCC 19392(T), was sequenced using the PacBio RS II sequencing system. Its genome is comprised of 2,431,533 bp and is predicted to encode 2,264 proteins and 82 RNAs.


July 7, 2019  |  

Complete genome sequence of Paenibacillus beijingensis 7188(T) (=DSM 24997(T)), a novel rhizobacterium from jujube garden soil.

We present here the complete genome sequence of a novel species Paenibacillus beijingensis 7188(T) (=DSM 24997(T)) from jujube rhizosphere soil that consists of one circular chromosome of 5,749,967bp with a GC content of 52.5%. On the significance of first genome information in this species, the genome sequence of strain 7188(T) will provide a better comprehension of Paenibacillus species for the practical uses as a biofertilizer in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii.

Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.


July 7, 2019  |  

Complex population structure and virulence differences among serotype 2 Streptococcus suis strains belonging to sequence type 28.

Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases.


July 7, 2019  |  

Complete genome and plasmid sequences of three Canadian strains of Salmonella enterica subsp. enterica serovar Enteritidis belonging to phage types 8, 13, and 13a.

Salmonella enterica subsp. enterica serovar Enteritidis is a prominent cause of human salmonellosis frequently linked to poultry products. In Canada, S. Enteritidis phage types 8, 13, and 13a predominate among both clinical and poultry isolates. Here, we report the complete genome and plasmid sequences of poultry isolates of these three phage types. Copyright © 2015 Rehman et al.


July 7, 2019  |  

Improved draft genome sequence of Clostridium pasteurianum strain ATCC 6013 (DSM 525) using a hybrid next-generation sequencing approach.

We present an improved draft genome sequence for Clostridium pasteurianum strain ATCC 6013 (DSM 525), the type strain of the species and an important solventogenic bacterium with industrial potential. Availability of a near-complete genome sequence will enable strain engineering of this promising bacterium. Copyright © 2014 Pyne et al.


July 7, 2019  |  

First complete genome sequence of Staphylococcus xylosus, a meat starter culture and a host to propagate Staphylococcus aureus phages.

Staphylococcus xylosus is a bacterial species used in meat fermentation and a commensal microorganism found on animals. We present the first complete circular genome from this species. The genome is composed of 2,757,557 bp, with a G+C content of 32.9%, and contains 2,514 genes and 79 structural RNAs. Copyright © 2014 Labrie et al.


July 7, 2019  |  

High resolution assembly and characterization of genomes of Canadian isolates of Salmonella Enteritidis.

There is a need to characterize genomes of the foodborne pathogen, Salmonella enterica serovar Enteritidis (SE) and identify genetic information that could be ultimately deployed for differentiating strains of the organism, a need that is yet to be addressed mainly because of the high degree of clonality of the organism. In an effort to achieve the first characterization of the genomes of SE of Canadian origin, we carried out massively parallel sequencing of the nucleotide sequence of 11 SE isolates obtained from poultry production environments (n?=?9), a clam and a chicken, assembled finished genomes and investigated diversity of the SE genome.The median genome size was 4,678,683 bp. A total of 4,833 chromosomal genes defined the pan genome of our field SE isolates consisting of 4,600 genes present in all the genomes, i.e., core genome, and 233 genes absent in at least one genome (accessory genome). Genome diversity was demonstrable by the presence of 1,360 loci showing single nucleotide polymorphism (SNP) in the core genome which was used to portray the genetic distances by means of a phylogenetic tree for the SE isolates. The accessory genome consisted mostly of previously identified SE prophage sequences as well as two, apparently full-sized, novel prophages namely a 28 kb sequence provisionally designated as SE-OLF-10058 (3) prophage and a 43 kb sequence provisionally designated as SE-OLF-10012 prophage.The number of SNPs identified in the relatively large core genome of SE is a reflection of substantial diversity that could be exploited for strain differentiation as shown by the development of an informative phylogenetic tree. Prophage sequences can also be exploited for SE strain differentiation and lineage tracking. This work has laid the ground work for further studies to develop a readily adoptable laboratory test for the subtyping of SE.


July 7, 2019  |  

First complete genome sequence of Haemophilus influenzae serotype a.

Haemophilus influenzae is an important human pathogen that primarily infects small children. In recent years, H. influenzae serotype a has emerged as a significant cause of invasive disease among indigenous populations. Here, we present the first complete whole-genome sequence of H. influenzae serotype a.© Crown copyright 2017.


July 7, 2019  |  

Multi-omics approach to study global changes in a triclosan-resistant mutant strain of Acinetobacter baumannii ATCC 17978.

Acinetobacter baumannii AB042, a triclosan-resistant mutant strain, was examined for modulated gene expression using whole-genome sequencing, transcriptomics and proteomics in order to understand the mechanism of triclosan resistance as well as its impact on A. baumannii. Data revealed modulated expression of the fatty acid metabolism pathway, co-factors known to play a role in the synthesis of fatty acids, as well as several transcriptional regulators. The membrane composition of the mutant revealed a decrease in C18 with a corresponding increase in C16 fatty acids compared with the parent strain A. baumannii ATCC 17978. These data indicate that A. baumannii responds to triclosan by altering the expression of genes involved in fatty acid metabolism, antibiotic resistance and amino acid metabolism. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.


July 7, 2019  |  

An antimicrobial peptide-resistant minor subpopulation of Photorhabdus luminescens is responsible for virulence.

Some of the bacterial cells in isogenic populations behave differently from others. We describe here how a new type of phenotypic heterogeneity relating to resistance to cationic antimicrobial peptides (CAMPs) is determinant for the pathogenic infection process of the entomopathogenic bacterium Photorhabdus luminescens. We demonstrate that the resistant subpopulation, which accounts for only 0.5% of the wild-type population, causes septicemia in insects. Bacterial heterogeneity is driven by the PhoPQ two-component regulatory system and expression of pbgPE, an operon encoding proteins involved in lipopolysaccharide (LPS) modifications. We also report the characterization of a core regulon controlled by the DNA-binding PhoP protein, which governs virulence in P. luminescens. Comparative RNAseq analysis revealed an upregulation of marker genes for resistance, virulence and bacterial antagonism in the pre-existing resistant subpopulation, suggesting a greater ability to infect insect prey and to survive in cadavers. Finally, we suggest that the infection process of P. luminescens is based on a bet-hedging strategy to cope with the diverse environmental conditions experienced during the lifecycle.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.