October 23, 2019  |  

Alternative splicing profile and sex-preferential gene expression in the female and male Pacific abalone Haliotis discus hannai.

In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.

September 22, 2019  |  

A near complete snapshot of the Zea mays seedling transcriptome revealed from ultra-deep sequencing.

RNA-sequencing (RNA-seq) enables in-depth exploration of transcriptomes, but typical sequencing depth often limits its comprehensiveness. In this study, we generated nearly 3 billion RNA-Seq reads, totaling 341 Gb of sequence, from a Zea mays seedling sample. At this depth, a near complete snapshot of the transcriptome was observed consisting of over 90% of the annotated transcripts, including lowly expressed transcription factors. A novel hybrid strategy combining de novo and reference-based assemblies yielded a transcriptome consisting of 126,708 transcripts with 88% of expressed known genes assembled to full-length. We improved current annotations by adding 4,842 previously unannotated transcript variants and many new features, including 212 maize transcripts, 201 genes, 10 genes with undocumented potential roles in seedlings as well as maize lineage specific gene fusion events. We demonstrated the power of deep sequencing for large transcriptome studies by generating a high quality transcriptome, which provides a rich resource for the research community.

September 22, 2019  |  

Differential increases of specific FMR1 mRNA isoforms in premutation carriers.

Over 40% of male and ~16% of female carriers of a premutation FMR1 allele (55-200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to the premutation pathology.To address this question, we have applied a long-read sequencing approach using single-molecule real-time (SMRT) sequencing and qRT-PCR. Our SMRT sequencing analysis performed on peripheral blood mononuclear cells, fibroblasts and brain tissue samples derived from premutation carriers and controls revealed the existence of 16 isoforms of 24 predicted variants. Although the relative abundance of all mRNA isoforms was significantly increased in the premutation group, as expected based on the bulk increase in mRNA levels, there was a disproportionate (fourfold to sixfold) increase, relative to the overall increase in mRNA, in the abundance of isoforms spliced at both exons 12 and 14, specifically Iso10 and Iso10b, containing the complete exon 15 and differing only in splicing in exon 17.These findings suggest that RNA toxicity may arise from a relative increase of all FMR1 mRNA isoforms. Interestingly, the Iso10 and Iso10b mRNA isoforms, lacking the C-terminal functional sites for fragile X mental retardation protein function, are the most increased in premutation carriers relative to normal, suggesting a functional relevance in the pathology of FMR1-associated disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

September 22, 2019  |  

Lentinula edodes genome survey and postharvest transcriptome analysis.

Lentinula edodes is a popular, cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction for Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and by using long reads by PacBio, resulting in a contig number of 1,951 and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcriptome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes. This analysis revealed that Lentinula edodes lacks lignin peroxidase. To reveal genes involved in the loss of quality of Lentinula edodes postharvest fruiting bodies, transcriptome analysis was carried out using serial analysis of gene expression (SuperSAGE). This analysis revealed that many cell wall-related enzymes are upregulated after harvest, such as ß-1,3-1,6-glucan-degrading enzymes in glycoside hydrolase (GH) families GH5, GH16, GH30, GH55, and GH128, and thaumatin-like proteins. In addition, we found that several chitin-related genes are upregulated, such as putative chitinases in GH family 18, exochitinases in GH20, and a putative chitosanase in GH family 75. The results suggest that cell wall-degrading enzymes synergistically cooperate for rapid fruiting body autolysis. Many putative transcription factor genes were upregulated postharvest, such as genes containing high-mobility-group (HMG) domains and zinc finger domains. Several cell death-related proteins were also upregulated postharvest.IMPORTANCE Our data collectively suggest that there is a rapid fruiting body autolysis system in Lentinula edodes The genes for the loss of postharvest quality newly found in this research will be targets for the future breeding of strains that keep fresh longer than present strains. De novoLentinula edodes genome assembly data will be used for the construction of a complete Lentinula edodes chromosome map for future breeding. Copyright © 2017 American Society for Microbiology.

September 22, 2019  |  

Transgenerational attenuation of opioid self-administration as a consequence of adolescent morphine exposure.

The United States is in the midst of an opiate epidemic, with abuse of prescription and illegal opioids increasing steadily over the past decade. While it is clear that there is a genetic component to opioid addiction, there is a significant portion of heritability that cannot be explained by genetics alone. The current study was designed to test the hypothesis that maternal exposure to opioids prior to pregnancy alters abuse liability in subsequent generations. Female adolescent Sprague Dawley rats were administered morphine at increasing doses (5-25 mg/kg, s.c.) or saline for 10 days (P30-39). During adulthood, animals were bred with drug-naïve colony males. Male and female adult offspring (F1 animals) were tested for morphine self-administration acquisition, progressive ratio, extinction, and reinstatement at three doses of morphine (0.25, 0.75, 1.25 mg/kg/infusion). Grand offspring (F2 animals, from the maternal line) were also examined. Additionally, gene expression changes within the nucleus accumbens were examined with RNA deep sequencing (PacBio) and qPCR. There were dose- and sex-dependent effects on all phases of the self-administration paradigm that indicate decreased morphine reinforcement and attenuated relapse-like behavior. Additionally, genes related to synaptic plasticity, as well as myelin basic protein (MBP), were dysregulated. Some, but not all, effects persisted into the subsequent (F2) generation. The results demonstrate that even limited opioid exposure during adolescence can have lasting effects across multiple generations, which has implications for mechanisms of the transmission of drug abuse liability in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

September 22, 2019  |  

Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins.

Molecular diversity of surface receptors has been hypothesized to provide a mechanism for selective synaptic connectivity. Neurexins are highly diversified receptors that drive the morphological and functional differentiation of synapses. Using a single cDNA sequencing approach, we detected 1,364 unique neurexin-a and 37 neurexin-ß mRNAs produced by alternative splicing of neurexin pre-mRNAs. This molecular diversity results from near-exhaustive combinatorial use of alternative splice insertions in Nrxn1a and Nrxn2a. By contrast, Nrxn3a exhibits several highly stereotyped exon selections that incorporate novel elements for posttranscriptional regulation of a subset of transcripts. Complexity of Nrxn1a repertoires correlates with the cellular complexity of neuronal tissues, and a specific subset of isoforms is enriched in a purified cell type. Our analysis defines the molecular diversity of a critical synaptic receptor and provides evidence that neurexin diversity is linked to cellular diversity in the nervous system. Copyright © 2014 Elsevier Inc. All rights reserved.

September 22, 2019  |  

Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.

July 19, 2019  |  

Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing.

Single-molecule real-time (SMRT) DNA sequencing allows the systematic detection of chemical modifications such as methylation but has not previously been applied on a genome-wide scale. We used this approach to detect 49,311 putative 6-methyladenine (m6A) residues and 1,407 putative 5-methylcytosine (m5C) residues in the genome of a pathogenic Escherichia coli strain. We obtained strand-specific information for methylation sites and a quantitative assessment of the frequency of methylation at each modified position. We deduced the sequence motifs recognized by the methyltransferase enzymes present in this strain without prior knowledge of their specificity. Furthermore, we found that deletion of a phage-encoded methyltransferase-endonuclease (restriction-modification; RM) system induced global transcriptional changes and led to gene amplification, suggesting that the role of RM systems extends beyond protecting host genomes from foreign DNA.

July 19, 2019  |  

Complex interplay among DNA modification, noncoding RNA expression and protein-coding RNA expression in Salvia miltiorrhiza chloroplast genome.

Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA) genes. Comparison of the abundance of protein-coding transcripts (cRNA) with and without overlapping antisense ncRNAs (asRNA) suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05). Using the SMRT Portal software (v1.3.2), 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box-like motif (CPGDMM1, "TATANNNATNA"), and an unknown motif (CPGDMM2 "WNYANTGAW"). Specifically, 35 of the 97 CPGDMM1 motifs (36.1%) and 91 of the 369 CPGDMM2 motifs (24.7%) were found to be significantly modified (p<0.01). Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01). Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome.

July 19, 2019  |  

The somatic genomic landscape of chromophobe renal cell carcinoma.

We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

July 7, 2019  |  

The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island.

The complete genome sequence of the original isolate of the model actinomycete Streptomyces lividans 66, also referred to as 1326, was deciphered after a combination of next-generation sequencing platforms and a hybrid assembly pipeline. Comparative analysis of the genomes of S. lividans 66 and closely related strains, including S. coelicolor M145 and S. lividans TK24, was used to identify strain-specific genes. The genetic diversity identified included a large genomic island with a mosaic structure, present in S. lividans 66 but not in the strain TK24. Sequence analyses showed that this genomic island has an anomalous (G + C) content, suggesting recent acquisition and that it is rich in metal-related genes. Sequences previously linked to a mobile conjugative element, termed plasmid SLP3 and defined here as a 94 kb region, could also be identified within this locus. Transcriptional analysis of the response of S. lividans 66 to copper was used to corroborate a role of this large genomic island, including two SLP3-borne “cryptic” peptide biosynthetic gene clusters, in metal homeostasis. Notably, one of these predicted biosynthetic systems includes an unprecedented nonribosomal peptide synthetase–tRNA-dependent transferase biosynthetic hybrid organization. This observation implies the recruitment of members of the leucyl/phenylalanyl-tRNA-protein transferase family to catalyze peptide bond formation within the biosynthesis of natural products. Thus, the genome sequence of S. lividans 66 not only explains long-standing genetic and phenotypic differences but also opens the door for further in-depth comparative genomic analyses of model Streptomyces strains, as well as for the discovery of novel natural products following genome-mining approaches.

July 7, 2019  |  

The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms.

Tung tree (Vernicia fordii) is an economically important tree widely cultivated for industrial oil production in China. To better understand the molecular basis of tung tree chloroplasts, we sequenced and characterized its genome using PacBio RS II sequencing platforms. The chloroplast genome was sequenced with 161,528?bp in length, composed with one pair of inverted repeats (IRs) of 26,819?bp, which were separated by one small single copy (SSC; 18,758?bp) and one large single copy (LSC; 89,132?bp). The genome contains 114 genes, coding for 81 protein, four ribosomal RNAs and 29 transfer RNAs. An expansion with integration of an additional rps19 gene in the IR regions was identified. Compared to the chloroplast genome of Jatropha curcas, a species from the same family, the tung tree chloroplast genome is distinct with 85 single nucleotide polymorphisms (SNPs) and 82 indels. Phylogenetic analysis suggests that V. fordii is a sister species with J. curcas within the Eurosids I. The nucleotide sequence provides vital molecular information for understanding the biology of this important oil tree.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.