June 1, 2021  |  

Long read sequencing technology to solve complex genomic regions assembly in plants

Numerous whole genome sequencing projects already achieved or ongoing have highlighted the fact that obtaining a high quality genome sequence is necessary to address comparative genomics questions such as structural variations among genotypes and gain or loss of specific function. Despite the spectacular progress that has been done regarding sequencing technologies, accurate and reliable data are still challenging, at the whole genome scale but also when targeting specific genomic regions. These issues are even more noticeable for complex plant genomes. Most plant genomes are known to be particularly challenging due to their size, high density of repetitive elements and various levels of ploidy. To overcome these issues, we have developed a strategy in order to reduce the genome complexity by using the large insert BAC libraries combined with next generation sequencing technologies. We have compared two different technologies (Roche-454 and Pacific Biosciences PacBio RS II) to sequence pools of BAC clones in order to obtain the best quality sequence. We targeted nine BAC clones from different species (maize, wheat, strawberry, barley, sugarcane and sunflower) known to be complex in terms of sequence assembly. We sequenced the pools of the nine BAC clones with both technologies. We have compared results of assembly and highlighted differences due to the sequencing technologies used. We demonstrated that the long reads obtained with the PacBio RS II technology enables to obtain a better and more reliable assembly notably by preventing errors due to duplicated or repetitive sequences in the same region.


April 9, 2021  |  

Creating Core Demand with HiFi Sequencing

In this video, Dave Miller from PacBio and Alvaro Hernandez PhD from the University of Illinois Urbana- Champaign discuss how to create Core Lab demand using PacBio highly accurate long-read,…


April 21, 2020  |  

Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants.

Horizontal gene transfer (HGT), the movement and genomic integration of DNA across species boundaries, is commonly associated with bacteria and other microorganisms, but functional HGT (fHGT) is increasingly being recognized in heterotrophic parasitic plants that obtain their nutrients and water from their host plants through direct haustorial feeding. Here, in the holoparasitic stem parasite Cuscuta, we identify 108?transcribed and probably functional HGT events in Cuscuta campestris and related species, plus 42?additional regions with host-derived transposon, pseudogene and non-coding sequences. Surprisingly, 18?Cuscuta fHGTs were acquired from the same gene families by independent HGT events in Orobanchaceae parasites, and the majority are highly expressed in the haustorial feeding structures in both lineages. Convergent retention and expression of HGT sequences suggests an adaptive role for specific additional genes in parasite biology. Between 16 and 20 of the transcribed HGT events are inferred as ancestral in Cuscuta based on transcriptome sequences from species across the phylogenetic range of the genus, implicating fHGT in the successful radiation of Cuscuta parasites. Genome sequencing of C. campestris supports transfer of genomic DNA-rather than retroprocessed RNA-as the mechanism of fHGT. Many of the C. campestris genes horizontally acquired are also frequent sources of 24-nucleotide small RNAs that are typically associated with RNA-directed DNA methylation. One HGT encoding a leucine-rich repeat protein kinase overlaps with a microRNA that has been shown to regulate host gene expression, suggesting that HGT-derived parasite small RNAs may function in the parasite-host interaction. This study enriches our understanding of HGT by describing a parasite-host system with unprecedented gene exchange that points to convergent evolution of HGT events and the functional importance of horizontally transferred coding and non-coding sequences.


April 21, 2020  |  

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.

Completing a genome is an important goal of genome assembly. However, many assemblies, including reference assemblies, are unfinished and have a number of gaps. Long reads obtained from third-generation sequencing (TGS) platforms can help close these gaps and improve assembly contiguity. However, current gap-closure approaches using long reads require extensive runtime and high memory usage. Thus, a fast and memory-efficient approach using long reads is needed to obtain complete genomes.We developed LR_Gapcloser to rapidly and efficiently close the gaps in genome assembly. This tool utilizes long reads generated from TGS sequencing platforms. Tested on de novo assembled gaps, repeat-derived gaps, and real gaps, LR_Gapcloser closed a higher number of gaps faster and with a lower error rate and a much lower memory usage than two existing, state-of-the art tools. This tool utilized raw reads to fill more gaps than when using error-corrected reads. It is applicable to gaps in the assemblies by different approaches and from large and complex genomes. After performing gap-closure using this tool, the contig N50 size of the human CHM1 genome was improved from 143 kb to 19 Mb, a 132-fold increase. We also closed the gaps in the Triticum urartu genome, a large genome rich in repeats; the contig N50 size was increased by 40%. Further, we evaluated the contiguity and correctness of six hybrid assembly strategies by combining the optimal TGS-based and next-generation sequencing-based assemblers with LR_Gapcloser. A proposed and optimal hybrid strategy generated a new human CHM1 genome assembly with marked contiguity. The contig N50 value was greater than 28 Mb, which is larger than previous non-reference assemblies of the diploid human genome.LR_Gapcloser is a fast and efficient tool that can be used to close gaps and improve the contiguity of genome assemblies. A proposed hybrid assembly including this tool promises reference-grade assemblies. The software is available at http://www.fishbrowser.org/software/LR_Gapcloser/.


April 21, 2020  |  

gapFinisher: A reliable gap filling pipeline for SSPACE-LongRead scaffolder output.

Unknown sequences, or gaps, are present in many published genomes across public databases. Gap filling is an important finishing step in de novo genome assembly, especially in large genomes. The gap filling problem is nontrivial and while there are many computational tools partially solving the problem, several have shortcomings as to the reliability and correctness of the output, i.e. the gap filled draft genome. SSPACE-LongRead is a scaffolding tool that utilizes long reads from multiple third-generation sequencing platforms in finding links between contigs and combining them. The long reads potentially contain sequence information to fill the gaps created in the scaffolding, but SSPACE-LongRead currently lacks this functionality. We present an automated pipeline called gapFinisher to process SSPACE-LongRead output to fill gaps after the scaffolding. gapFinisher is based on the controlled use of a previously published gap filling tool FGAP and works on all standard Linux/UNIX command lines. We compare the performance of gapFinisher against two other published gap filling tools PBJelly and GMcloser. We conclude that gapFinisher can fill gaps in draft genomes quickly and reliably. In addition, the serial design of gapFinisher makes it scale well from prokaryote genomes to larger genomes with no increase in the computational footprint.


April 21, 2020  |  

GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.

Closing gaps in draft genomes is an important post processing step in genome assembly. It leads to more complete genomes, which benefits downstream genome analysis such as annotation and genotyping. Several tools have been developed for gap closing. However, these tools don’t fully utilize the information contained in the sequence data. For example, while it is known that many gaps are caused by genomic repeats, existing tools often ignore many sequence reads that originate from a repeat-related gap.We compare GAPPadder with GapCloser, GapFiller and Sealer on one bacterial genome, human chromosome 14 and the human whole genome with paired-end and mate-paired reads with both short and long insert sizes. Empirical results show that GAPPadder can close more gaps than these existing tools. Besides closing gaps on draft genomes assembled only from short sequence reads, GAPPadder can also be used to close gaps for draft genomes assembled with long reads. We show GAPPadder can close gaps on the bed bug genome and the Asian sea bass genome that are assembled partially and fully with long reads respectively. We also show GAPPadder is efficient in both time and memory usage.In this paper, we propose a new approach called GAPPadder for gap closing. The main advantage of GAPPadder is that it uses more information in sequence data for gap closing. In particular, GAPPadder finds and uses reads that originate from repeat-related gaps. We show that these repeat-associated reads are useful for gap closing, even though they are ignored by all existing tools. Other main features of GAPPadder include utilizing the information in sequence reads with different insert sizes and performing two-stage local assembly of gap sequences. The results show that our method can close more gaps than several existing tools. The software tool, GAPPadder, is available for download at https://github.com/Reedwarbler/GAPPadder .


April 21, 2020  |  

Experimental validation of in silico predicted RAD locus frequencies using genomic resources and short read data from a model marine mammal.

Restriction site-associated DNA sequencing (RADseq) has revolutionized the study of wild organisms by allowing cost-effective genotyping of thousands of loci. However, for species lacking reference genomes, it can be challenging to select the restriction enzyme that offers the best balance between the number of obtained RAD loci and depth of coverage, which is crucial for a successful outcome. To address this issue, PredRAD was recently developed, which uses probabilistic models to predict restriction site frequencies from a transcriptome assembly or other sequence resource based on either GC content or mono-, di- or trinucleotide composition. This program generates predictions that are broadly consistent with estimates of the true number of restriction sites obtained through in silico digestion of available reference genome assemblies. However, in practice the actual number of loci obtained could potentially differ as incomplete enzymatic digestion or patchy sequence coverage across the genome might lead to some loci not being represented in a RAD dataset, while erroneous assembly could potentially inflate the number of loci. To investigate this, we used genome and transcriptome assemblies together with RADseq data from the Antarctic fur seal (Arctocephalus gazella) to compare PredRAD predictions with empirical estimates of the number of loci obtained via in silico digestion and from de novo assemblies.PredRAD yielded consistently higher predicted numbers of restriction sites for the transcriptome assembly relative to the genome assembly. The trinucleotide and dinucleotide models also predicted higher frequencies than the mononucleotide or GC content models. Overall, the dinucleotide and trinucleotide models applied to the transcriptome and the genome assemblies respectively generated predictions that were closest to the number of restriction sites estimated by in silico digestion. Furthermore, the number of de novo assembled RAD loci mapping to restriction sites was similar to the expectation based on in silico digestion.Our study reveals generally high concordance between PredRAD predictions and empirical estimates of the number of RAD loci. This further supports the utility of PredRAD, while also suggesting that it may be feasible to sequence and assemble the majority of RAD loci present in an organism’s genome.


September 22, 2019  |  

A single-cell genome for Thiovulum sp.

We determined a significant fraction of the genome sequence of a representative of Thiovulum, the uncultivated genus of colorless sulfur Epsilonproteobacteria, by analyzing the genome sequences of four individual cells collected from phototrophic mats from Elkhorn Slough, California. These cells were isolated utilizing a microfluidic laser-tweezing system, and their genomes were amplified by multiple-displacement amplification prior to sequencing. Thiovulum is a gradient bacterium found at oxic-anoxic marine interfaces and noted for its distinctive morphology and rapid swimming motility. The genomic sequences of the four individual cells were assembled into a composite genome consisting of 221 contigs covering 2.083 Mb including 2,162 genes. This single-cell genome represents a genomic view of the physiological capabilities of isolated Thiovulum cells. Thiovulum is the second-fastest bacterium ever observed, swimming at 615 µm/s, and this genome shows that this rapid swimming motility is a result of a standard flagellar machinery that has been extensively characterized in other bacteria. This suggests that standard flagella are capable of propelling bacterial cells at speeds much faster than typically thought. Analysis of the genome suggests that naturally occurring Thiovulum populations are more diverse than previously recognized and that studies performed in the past probably address a wide range of unrecognized genotypic and phenotypic diversities of Thiovulum. The genome presented in this article provides a basis for future isolation-independent studies of Thiovulum, where single-cell and metagenomic tools can be used to differentiate between different Thiovulum genotypes.


September 22, 2019  |  

Long-read sequencing and de novo assembly of a Chinese genome.

Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arrays and generate a de novo assembly of 2.93?Gb (contig N50: 8.3?Mb, scaffold N50: 22.0?Mb, including 39.3?Mb N-bases), together with 206?Mb of alternative haplotypes. The assembly fully or partially fills 274 (28.4%) N-gaps in the reference genome GRCh38. Comparison to GRCh38 reveals 12.8?Mb of HX1-specific sequences, including 4.1?Mb that are not present in previously reported Asian genomes. Furthermore, long-read sequencing of the transcriptome reveals novel spliced genes that are not annotated in GENCODE and are missed by short-read RNA-Seq. Our results imply that improved characterization of genome functional variation may require the use of a range of genomic technologies on diverse human populations.


September 22, 2019  |  

Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists.

Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.