Menu
September 22, 2019  |  

Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists.

Authors: Martino, Elena and Morin, Emmanuelle and Grelet, Gwen-Aëlle and Kuo, Alan and Kohler, Annegret and Daghino, Stefania and Barry, Kerrie W and Cichocki, Nicolas and Clum, Alicia and Dockter, Rhyan B and Hainaut, Matthieu and Kuo, Rita C and LaButti, Kurt and Lindahl, Björn D and Lindquist, Erika A and Lipzen, Anna and Khouja, Hassine-Radhouane and Magnuson, Jon and Murat, Claude and Ohm, Robin A and Singer, Steven W and Spatafora, Joseph W and Wang, Mei and Veneault-Fourrey, Claire and Henrissat, Bernard and Grigoriev, Igor V and Martin, Francis M and Perotto, Silvia

Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Journal: The New phytologist
DOI: 10.1111/nph.14974
Year: 2018

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.