Shiga toxin-producing Escherichia coli (STEC) is an emerging pathogen. Recently there has been a global in the number of outbreaks caused by non-O157 STECs, typically involving six serogroups O26, O45, 0103, 0111, and 0145. STEC O145:H28 has been associated with severe human disease including hemolytic-uremic syndrome (HUS), and is demonstrated by the 2007 Belgian ice-cream-associated outbreak and 2010 US lettuce-associated outbreak, with over 10% of patients developing HUS in each. The goal of this work was to do comparative genomics of strains, clinical and environmental, to investigate genome diversity and virulence evolution of this important foodborne pathogen.
The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition,…
In this AGBT 2017 poster, the University of Helsinki’s Petri Auevinen reports on efforts to understand bacteria that grow on, and subsequently spoil, food. This analysis monitored DNA modifications and transcriptomic changes in three species of lactic acid bacteria. Scientists discovered that the organisms’ metabolic profiles change substantially when grown together compared to those cultured individually, and are now studying how Cas protein activity changes under these conditions too.
A total of 91 draft genome sequences were used to analyze isolates of Salmonella enterica serovar Enteritidis obtained from feral mice caught on poultry farms in Pennsylvania. One objective was to find mutations disrupting open reading frames (ORFs) and another was to determine if ORF-disruptive mutations were present in isolates obtained from other sources. A total of 83 mice were obtained between 1995-1998. Isolates separated into two genomic clades and 12 subgroups due to 742 mutations. Nineteen ORF-disruptive mutations were found, and in addition, bigA had exceptional heterogeneity requiring additional evaluation. The TRAMS algorithm detected only 6 ORF disruptions. The…
Infant formula (IF) requires a strict microbiological standard because of the high vulnerability of infants to foodborne diseases. The current study used the PacBio single molecule real-time (SMRT) sequencing platform to generate full-length 16S rRNA-based bacterial microbiota profiles of thirty Chinese domestic and imported IF samples. A total of 600 species were identified, dominated by Streptococcus thermophilus, Lactococcus lactis and Lactococcus piscium. Distinctive bacterial profiles were observed between the two sample groups, as confirmed with both principal coordinate analysis and multivariate analysis of variance. Moreover, the product whey protein nitrogen index (WPNI), representing the degree of preheating, negatively correlated with…
The Pacific Biosciences (Menlo Park, CA) single molecule, real-time sequencing technology (SMRT) was reported to have some advantages in analyzing the bacterial profile of environmental samples. In this study, the presence of bacterial contaminants in raw milk, UHT milk, and infant formula was determined by SMRT sequencing of the full length 16S rRNA gene. The bacterial profiles obtained at different taxonomic levels revealed clear differences in bacterial community structure across the 16 analyzed dairy samples. No indicative pathogenic bacteria were found in any of these tested samples. However, some of the detected bacterial species (e.g., Bacillus cereus, Enterococcus casseliflavus, and…
Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited…
Ampicillin, the first semi-synthetic penicillin active against Enterobacteriaceae, was released onto the market in 1961. The first outbreaks of disease caused by ampicillin-resistant strains of Salmonella enterica serotype Typhimurium were identified in the UK in 1962 and 1964. We aimed to date the emergence of this resistance in historical isolates of S enterica serotype Typhimurium.In this retrospective, whole-genome sequencing study, we analysed 288 S enterica serotype Typhimurium isolates collected between 1911 and 1969 from 31 countries on four continents and from various sources including human beings, animals, feed, and food. All isolates were tested for antimicrobial drug susceptibility with the…
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S. Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR).…
Whole genome sequencing (WGS), using high throughput sequencing technology, reveals the complete sequence of the bacterial genome in a few days. WGS is increasingly being used for source tracking, pathogen surveillance and outbreak investigation due to its high discriminatory power. In the food industry, WGS used for source tracking is beneficial to support contamination investigations. Despite its increased use, no standards or guidelines are available today for the use of WGS in outbreak and/or trace-back investigations. Here we present a validation of our complete (end-to-end) WGS workflow for Listeria monocytogenes and Salmonella enterica including: subculture of isolates, DNA extraction, sequencing…
One mcr-1-carrying ST34-type Salmonella Typhimurium WW012 was cultured from 3,200 ready-to-eat (RTE) pork samples in 2014 in China. Broth dilution method was applied to obtain the antimicrobial susceptibility of Salmonella Typhimurium WW012. Broth matting assays were carried out to detect transferability of this phenotype and whole-genome sequencing was performed to analyze its genomic characteristic. Thirty out of 3,200 RTE samples were positive for Salmonella and the three most frequent serotypes were identified as S. Derby (n = 8), S. Typhimurium (n = 6), and S. Enteritidis (n = 6). One S. Typhimurium isolate (S. Typhimurium WW012) cultured from RTE prepared…
We identified 20 to 22 resistance genes, carried in four incompatibility groups of plasmids, in each of five genetically closely related Salmonella enterica serovar Typhimurium strains recovered from humans, pigs, and chickens. The genes conferred resistance to aminoglycosides, chloramphenicol, sulfonamides, trimethoprim, tetracycline, fluoroquinolones, extended-spectrum cephalosporins and cefoxitin, and azithromycin. This study demonstrates the transmission of multidrug-resistant Salmonella strains among humans and food animals and may be the first identification of mphA in azithromycin-resistant Salmonella strains in Taiwan. Copyright © 2018 American Society for Microbiology.
Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid…
Escherichia coli O145:H28 strain RM12581 was isolated from bagged romaine lettuce during a 2010 U.S. lettuce-associated outbreak. E. coli O145:H28 strain RM12761 was isolated from ice cream during a 2007 ice cream-associated outbreak in Belgium. Here we report the complete genome sequences and annotation of both strains.
Although serotype O157:H7 is the predominant enterohemorrhagic Escherichia coli (EHEC), outbreaks of non-O157 EHEC that cause severe foodborne illness, including hemolytic uremic syndrome have increased worldwide. In fact, non-O157 serotypes are now estimated to cause over half of all the Shiga toxin-producing Escherichia coli (STEC) cases, and outbreaks of non-O157 EHEC infections are frequently associated with serotypes O26, O45, O103, O111, O121, and O145. Currently, there are no complete genomes for O145 in public databases.We determined the complete genome sequences of two O145 strains (EcO145), one linked to a US lettuce-associated outbreak (RM13514) and one to a Belgium ice-cream-associated outbreak…