April 21, 2020  |  

Efficiency of PacBio long read correction by 2nd generation Illumina sequencing.

Long sequencing reads offer unprecedented opportunities in analysis and reconstruction of complex genomic regions. However, the gain in sequence length is often traded for quality. Therefore, recently several approaches have been proposed (e.g. higher sequencing coverage, hybrid assembly or sequence correction) to enhance the quality of long sequencing reads. A simple and cost-effective approach includes use of the high quality 2nd generation sequencing data to improve the quality of long reads. We designed a dedicated testing procedure and selected universal programs for long read correction, which provide as the output sequences that can be used in further genomic and transcriptomic studies. Our results show that HALC is the best choice for correction of long PacBio reads, when both, read size and quality, are the main focus of the analysis. However, the tested tools show some unexpected behaviors, including read trimming and fragmentation.Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Improving PacBio long read accuracy by short read alignment.

The recent development of third generation sequencing (TGS) generates much longer reads than second generation sequencing (SGS) and thus provides a chance to solve problems that are difficult to study through SGS alone. However, higher raw read error rates are an intrinsic drawback in most TGS technologies. Here we present a computational method, LSC, to perform error correction of TGS long reads (LR) by SGS short reads (SR). Aiming to reduce the error rate in homopolymer runs in the main TGS platform, the PacBio® RS, LSC applies a homopolymer compression (HC) transformation strategy to increase the sensitivity of SR-LR alignment without scarifying alignment accuracy. We applied LSC to 100,000 PacBio long reads from human brain cerebellum RNA-seq data and 64 million single-end 75 bp reads from human brain RNA-seq data. The results show LSC can correct PacBio long reads to reduce the error rate by more than 3 folds. The improved accuracy greatly benefits many downstream analyses, such as directional gene isoform detection in RNA-seq study. Compared with another hybrid correction tool, LSC can achieve over double the sensitivity and similar specificity.


July 7, 2019  |  

Hybrid de novo tandem repeat detection using short and long reads.

As one of the most studied genome rearrangements, tandem repeats have a considerable impact on genetic backgrounds of inherited diseases. Many methods designed for tandem repeat detection on reference sequences obtain high quality results. However, in the case of a de novo context, where no reference sequence is available, tandem repeat detection remains a difficult problem. The short reads obtained with the second-generation sequencing methods are not long enough to span regions that contain long repeats. This length limitation was tackled by the long reads obtained with the third-generation sequencing platforms such as Pacific Biosciences technologies. Nevertheless, the gain on the read length came with a significant increase of the error rate. The main objective of nowadays studies on long reads is to handle the high error rate up to 16%.In this paper we present MixTaR, the first de novo method for tandem repeat detection that combines the high-quality of short reads and the large length of long reads. Our hybrid algorithm uses the set of short reads for tandem repeat pattern detection based on a de Bruijn graph. These patterns are then validated using the long reads, and the tandem repeat sequences are constructed using local greedy assemblies.MixTaR is tested with both simulated and real reads from complex organisms. For a complete analysis of its robustness to errors, we use short and long reads with different error rates. The results are then analysed in terms of number of tandem repeats detected and the length of their patterns.Our method shows high precision and sensitivity. With low false positive rates even for highly erroneous reads, MixTaR is able to detect accurate tandem repeats with pattern lengths varying within a significant interval.


July 7, 2019  |  

proovread: large-scale high-accuracy PacBio correction through iterative short read consensus.

Today, the base code of DNA is mostly determined through sequencing by synthesis as provided by the Illumina sequencers. Although highly accurate, resulting reads are short, making their analyses challenging. Recently, a new technology, single molecule real-time (SMRT) sequencing, was developed that could address these challenges, as it generates reads of several thousand bases. But, their broad application has been hampered by a high error rate. Therefore, hybrid approaches that use high-quality short reads to correct erroneous SMRT long reads have been developed. Still, current implementations have great demands on hardware, work only in well-defined computing infrastructures and reject a substantial amount of reads. This limits their usability considerably, especially in the case of large sequencing projects.Here we present proovread, a hybrid correction pipeline for SMRT reads, which can be flexibly adapted on existing hardware and infrastructure from a laptop to a high-performance computing cluster. On genomic and transcriptomic test cases covering Escherichia coli, Arabidopsis thaliana and human, proovread achieved accuracies up to 99.9% and outperformed the existing hybrid correction programs. Furthermore, proovread-corrected sequences were longer and the throughput was higher. Thus, proovread combines the most accurate correction results with an excellent adaptability to the available hardware. It will therefore increase the applicability and value of SMRT sequencing.proovread is available at the following URL: http://proovread.bioapps.biozentrum.uni-wuerzburg.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

LoRDEC: accurate and efficient long read error correction.

PacBio single molecule real-time sequencing is a third-generation sequencing technique producing long reads, with comparatively lower throughput and higher error rate. Errors include numerous indels and complicate downstream analysis like mapping or de novo assembly. A hybrid strategy that takes advantage of the high accuracy of second-generation short reads has been proposed for correcting long reads. Mapping of short reads on long reads provides sufficient coverage to eliminate up to 99% of errors, however, at the expense of prohibitive running times and considerable amounts of disk and memory space.We present LoRDEC, a hybrid error correction method that builds a succinct de Bruijn graph representing the short reads, and seeks a corrective sequence for each erroneous region in the long reads by traversing chosen paths in the graph. In comparison, LoRDEC is at least six times faster and requires at least 93% less memory or disk space than available tools, while achieving comparable accuracy. Availability and implementaion: LoRDEC is written in C++, tested on Linux platforms and freely available at http://atgc.lirmm.fr/lordec. © The Author 2014. Published by Oxford University Press.


July 7, 2019  |  

Accurate selfcorrection of errors in long reads using de Bruijn graphs.

New long read sequencing technologies, like PacBio SMRT and Oxford NanoPore, can produce sequencing reads up to 50,000 bp long but with an error rate of at least 15%. Reducing the error rate is necessary for subsequent utilisation of the reads in, e.g., de novo genome assembly. The error correction problem has been tackled either by aligning the long reads against each other or by a hybrid approach that uses the more accurate short reads produced by second generation sequencing technologies to correct the long reads.We present an error correction method that uses long reads only. The method consists of two phases: first we use an iterative alignment-free correction method based on de Bruijn graphs with increasing length of k-mers, and second, the corrected reads are further polished using long-distance dependencies that are found using multiple alignments. According to our experiments the proposed method is the most accurate one relying on long reads only for read sets with high coverage. Furthermore, when the coverage of the read set is at least 75x, the throughput of the new method is at least 20% higher.LoRMA is freely available at http://www.cs.helsinki.fi/u/lmsalmel/LoRMA/ CONTACT: leena.salmela@cs.helsinki.fi. © The Author(s) 2016. Published by Oxford University Press.


July 7, 2019  |  

HALC: High throughput algorithm for long read error correction.

The third generation PacBio SMRT long reads can effectively address the read length issue of the second generation sequencing technology, but contain approximately 15% sequencing errors. Several error correction algorithms have been designed to efficiently reduce the error rate to 1%, but they discard large amounts of uncorrected bases and thus lead to low throughput. This loss of bases could limit the completeness of downstream assemblies and the accuracy of analysis.Here, we introduce HALC, a high throughput algorithm for long read error correction. HALC aligns the long reads to short read contigs from the same species with a relatively low identity requirement so that a long read region can be aligned to at least one contig region, including its true genome region’s repeats in the contigs sufficiently similar to it (similar repeat based alignment approach). It then constructs a contig graph and, for each long read, references the other long reads’ alignments to find the most accurate alignment and correct it with the aligned contig regions (long read support based validation approach). Even though some long read regions without the true genome regions in the contigs are corrected with their repeats, this approach makes it possible to further refine these long read regions with the initial insufficient short reads and correct the uncorrected regions in between. In our performance tests on E. coli, A. thaliana and Maylandia zebra data sets, HALC was able to obtain 6.7-41.1% higher throughput than the existing algorithms while maintaining comparable accuracy. The HALC corrected long reads can thus result in 11.4-60.7% longer assembled contigs than the existing algorithms.The HALC software can be downloaded for free from this site: https://github.com/lanl001/halc .


July 7, 2019  |  

LRCstats, a tool for evaluating long reads correction methods.

Third-generation sequencing (TGS) platforms that generate long reads, such as PacBio and Oxford Nanopore technologies, have had a dramatic impact on genomics research. However, despite recent improvements, TGS reads suffer from high-error rates and the development of read correction methods is an active field of research. This motivates the need to develop tools that can evaluate the accuracy of noisy long reads correction tools.We introduce LRCstats, a tool that measures the accuracy of long reads correction tools. LRCstats takes advantage of long reads simulators that provide each simulated read with an alignment to the reference genome segment they originate from, and does not rely on a step of mapping corrected reads onto the reference genome. This allows for the measurement of the accuracy of the correction while being consistent with the actual errors introduced in the simulation process used to generate noisy reads. We illustrate the usefulness of LRCstats by analyzing the accuracy of four hybrid correction methods for PacBio long reads over three datasets.https://github.com/cchauve/lrcstats.laseanl@sfu.ca or cedric.chauve@sfu.ca.Supplementary data are available at Bioinformatics online.© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com


July 7, 2019  |  

Highly accurate fluorogenic DNA sequencing with information theory-based error correction.

Eliminating errors in next-generation DNA sequencing has proved challenging. Here we present error-correction code (ECC) sequencing, a method to greatly improve sequencing accuracy by combining fluorogenic sequencing-by-synthesis (SBS) with an information theory-based error-correction algorithm. ECC embeds redundancy in sequencing reads by creating three orthogonal degenerate sequences, generated by alternate dual-base reactions. This is similar to encoding and decoding strategies that have proved effective in detecting and correcting errors in information communication and storage. We show that, when combined with a fluorogenic SBS chemistry with raw accuracy of 98.1%, ECC sequencing provides single-end, error-free sequences up to 200 bp. ECC approaches should enable accurate identification of extremely rare genomic variations in various applications in biology and medicine.


July 7, 2019  |  

An improved genome assembly of Azadirachta indica A. Juss.

Neem (Azadirachta indica A. Juss.), an evergreen tree of the Meliaceae family, is known for its medicinal, cosmetic, pesticidal and insecticidal properties. We had previously sequenced and published the draft genome of the plant, using mainly short read sequencing data. In this report, we present an improved genome assembly generated using additional short reads from Illumina and long reads from Pacific Biosciences SMRT sequencer. We assembled short reads and error corrected long reads using Platanus, an assembler designed to perform well for heterozygous genomes. The updated genome assembly (v2.0) yielded 3- and 3.5-fold increase in N50 and N75, respectively; 2.6-fold decrease in the total number of scaffolds; 1.25-fold increase in the number of valid transcriptome alignments; 13.4-fold less mis-assembly and 1.85-fold increase in the percentage repeat, over the earlier assembly (v1.0). The current assembly also maps better to the genes known to be involved in the terpenoid biosynthesis pathway. Together, the data represents an improved assembly of the A. indica genome. The raw data described in this manuscript are submitted to the NCBI Short Read Archive under the accession numbers SRX1074131, SRX1074132, SRX1074133, and SRX1074134 (SRP013453). Copyright © 2016 Author et al.


July 7, 2019  |  

Colib’read on galaxy: a tools suite dedicated to biological information extraction from raw NGS reads

With next-generation sequencing (NGS) technologies, the life sciences face a deluge of raw data. Classical analysis processes for such data often begin with an assembly step, needing large amounts of computing resources, and potentially removing or modifying parts of the biological information contained in the data. Our approach proposes to focus directly on biological questions, by considering raw unassembled NGS data, through a suite of six command-line tools.


July 7, 2019  |  

Jabba: hybrid error correction for long sequencing reads.

Third generation sequencing platforms produce longer reads with higher error rates than second generation technologies. While the improved read length can provide useful information for downstream analysis, underlying algorithms are challenged by the high error rate. Error correction methods in which accurate short reads are used to correct noisy long reads appear to be attractive to generate high-quality long reads. Methods that align short reads to long reads do not optimally use the information contained in the second generation data, and suffer from large runtimes. Recently, a new hybrid error correcting method has been proposed, where the second generation data is first assembled into a de Bruijn graph, on which the long reads are then aligned.In this context we present Jabba, a hybrid method to correct long third generation reads by mapping them on a corrected de Bruijn graph that was constructed from second generation data. Unique to our method is the use of a pseudo alignment approach with a seed-and-extend methodology, using maximal exact matches (MEMs) as seeds. In addition to benchmark results, certain theoretical results concerning the possibilities and limitations of the use of MEMs in the context of third generation reads are presented.Jabba produces highly reliable corrected reads: almost all corrected reads align to the reference, and these alignments have a very high identity. Many of the aligned reads are error-free. Additionally, Jabba corrects reads using a very low amount of CPU time. From this we conclude that pseudo alignment with MEMs is a fast and reliable method to map long highly erroneous sequences on a de Bruijn graph.


July 7, 2019  |  

CoLoRMap: Correcting Long Reads by Mapping short reads.

Second generation sequencing technologies paved the way to an exceptional increase in the number of sequenced genomes, both prokaryotic and eukaryotic. However, short reads are difficult to assemble and often lead to highly fragmented assemblies. The recent developments in long reads sequencing methods offer a promising way to address this issue. However, so far long reads are characterized by a high error rate, and assembling from long reads require a high depth of coverage. This motivates the development of hybrid approaches that leverage the high quality of short reads to correct errors in long reads.We introduce CoLoRMap, a hybrid method for correcting noisy long reads, such as the ones produced by PacBio sequencing technology, using high-quality Illumina paired-end reads mapped onto the long reads. Our algorithm is based on two novel ideas: using a classical shortest path algorithm to find a sequence of overlapping short reads that minimizes the edit score to a long read and extending corrected regions by local assembly of unmapped mates of mapped short reads. Our results on bacterial, fungal and insect data sets show that CoLoRMap compares well with existing hybrid correction methods.The source code of CoLoRMap is freely available for non-commercial use at https://github.com/sfu-compbio/colormapehaghshe@sfu.ca or cedric.chauve@sfu.caSupplementary data are available at Bioinformatics online.© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

An empirical evaluation of error correction methods and tools for next generation sequencing data

esearch. However, data produced by NGS is affected by different errors such as substitutions, deletions or insertion. It is essential to differentiate between true biological variants and alterations occurred due to errors for accurate downstream analysis. Many types of methods and tools have been developed for NGS error correction. Some of these methods only correct substitutions errors whereas others correct multi types of data errors. In this article, a comprehensive evaluation of three types of methods (k-spectrum based, Multi- sequencing alignment and Hybrid based) is presented which are implemented and adopted by different tools. Experiments have been conducted to compare the performance based on runtime and error correction rate. Two different computing platforms have been used for the experiments to evaluate effectiveness of runtime and error correction rate. The mission and aim of this comparative evaluation is to provide recommendations for selection of suitable tools to cope with the specific needs of users and practitioners. It has been noticed that k-mer spectrum based methodology generated superior results as compared to other methods. Amongst all the tools being utilized, Racer has shown eminent performance in terms of error correction rate and execution time for both small as well as large data sets. In multisequence alignment based tools, Karect depicts excellent error correction rate whereas Coral shows better execution time for all data sets. In hybrid based tools, Jabba shows better error correction rate and execution time as compared to brownie. Computing platforms mostly affect execution time but have no general effect on error correction rate.


July 7, 2019  |  

Hercules: a profile HMM-based hybrid error correction algorithm for long reads.

Choosing whether to use second or third generation sequencing platforms can lead to trade-offs between accuracy and read length. Several types of studies require long and accurate reads. In such cases researchers often combine both technologies and the erroneous long reads are corrected using the short reads. Current approaches rely on various graph or alignment based techniques and do not take the error profile of the underlying technology into account. Efficient machine learning algorithms that address these shortcomings have the potential to achieve more accurate integration of these two technologies. We propose Hercules, the first machine learning-based long read error correction algorithm. Hercules models every long read as a profile Hidden Markov Model with respect to the underlying platform’s error profile. The algorithm learns a posterior transition/emission probability distribution for each long read to correct errors in these reads. We show on two DNA-seq BAC clones (CH17-157L1 and CH17-227A2) that Hercules-corrected reads have the highest mapping rate among all competing algorithms and have the highest accuracy when the breadth of coverage is high. On a large human CHM1 cell line WGS data set, Hercules is one of the few scalable algorithms; and among those, it achieves the highest accuracy.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.